1。Lee J. †,Cooley D.,Wagner A.M.,Liston G.E. (2024+)通过参数的线性映射来投射未来的校准方法。 被接受的环境和生态统计。 2024年10月25日。 2。 Mhatre N.†,Cooley D.(2024)转换了时间序列极端的线性模型。 时间序列分析杂志,45,671-690。 https://doi.org/10.1111/jtsa.12732。 3。 Wixson,T。P.†,Cooley,D。(2023)季节性野生野生风险对变化的归因:统计极端方法。 应用气象与气候学杂志,62,1511-1521。 https://doi.org/10.1175/jamc-d-23-0072.1。 4。 Rohrbeck C.,Cooley D.(2023)使用极端主管模拟洪水事件集。 应用统计的年鉴,17:1333–1352 https://doi.org/10.1214/22-AOAS1672。 5。 Wagner A.M.,Bennett K.E.,Liston G.E.,Hiemstra C.A.和Cooley D.(2021)雪地占主导地位的极端变化的多个指标,美国水域Yakima River盆地地区,美国水,13:2608。 doi:0.3390/W13192608。 6。 Rutherford J.S,Sherwin E.D.,Ravikumar A.P.,Heath G.A.,Englander J.,Cooley D.,Lyon D.,Omara M.,Langt Q.,Brandt A.R. (2021)缩小差距:解释美国石油和天然气生产段甲烷库存的持续估计。 自然通讯,12:4715。 https://doi.org/10.1038/s41467-021-25017-4。 7。 修复M.†,Cooley D.,Thibaud E.(2020)同时进行空间验证的自回归模型。 环境,32:e2656。Lee J.†,Cooley D.,Wagner A.M.,Liston G.E.(2024+)通过参数的线性映射来投射未来的校准方法。被接受的环境和生态统计。2024年10月25日。2。Mhatre N.†,Cooley D.(2024)转换了时间序列极端的线性模型。时间序列分析杂志,45,671-690。 https://doi.org/10.1111/jtsa.12732。3。Wixson,T。P.†,Cooley,D。(2023)季节性野生野生风险对变化的归因:统计极端方法。应用气象与气候学杂志,62,1511-1521。 https://doi.org/10.1175/jamc-d-23-0072.1。4。Rohrbeck C.,Cooley D.(2023)使用极端主管模拟洪水事件集。应用统计的年鉴,17:1333–1352 https://doi.org/10.1214/22-AOAS1672。5。Wagner A.M.,Bennett K.E.,Liston G.E.,Hiemstra C.A.和Cooley D.(2021)雪地占主导地位的极端变化的多个指标,美国水域Yakima River盆地地区,美国水,13:2608。 doi:0.3390/W13192608。 6。 Rutherford J.S,Sherwin E.D.,Ravikumar A.P.,Heath G.A.,Englander J.,Cooley D.,Lyon D.,Omara M.,Langt Q.,Brandt A.R. (2021)缩小差距:解释美国石油和天然气生产段甲烷库存的持续估计。 自然通讯,12:4715。 https://doi.org/10.1038/s41467-021-25017-4。 7。 修复M.†,Cooley D.,Thibaud E.(2020)同时进行空间验证的自回归模型。 环境,32:e2656。Wagner A.M.,Bennett K.E.,Liston G.E.,Hiemstra C.A.和Cooley D.(2021)雪地占主导地位的极端变化的多个指标,美国水域Yakima River盆地地区,美国水,13:2608。 doi:0.3390/W13192608。6。Rutherford J.S,Sherwin E.D.,Ravikumar A.P.,Heath G.A.,Englander J.,Cooley D.,Lyon D.,Omara M.,Langt Q.,Brandt A.R. (2021)缩小差距:解释美国石油和天然气生产段甲烷库存的持续估计。 自然通讯,12:4715。 https://doi.org/10.1038/s41467-021-25017-4。 7。 修复M.†,Cooley D.,Thibaud E.(2020)同时进行空间验证的自回归模型。 环境,32:e2656。Rutherford J.S,Sherwin E.D.,Ravikumar A.P.,Heath G.A.,Englander J.,Cooley D.,Lyon D.,Omara M.,Langt Q.,Brandt A.R.(2021)缩小差距:解释美国石油和天然气生产段甲烷库存的持续估计。自然通讯,12:4715。 https://doi.org/10.1038/s41467-021-25017-4。7。修复M.†,Cooley D.,Thibaud E.(2020)同时进行空间验证的自回归模型。环境,32:e2656。https://doi.org/10.1002/env.2656 8。 Yuen R.,Stoev,S.,Cooley D.(2020)极高价值的分布鲁棒推断。 保险:数学与经济学,92:70-89。 https://doi.org/10.1016/j.insmatheco.2020.03.003 9。 江Y.,Cooley D.,Wehner M.P. (2020)主要成分分析,用于极端和对美国降水的应用。 气候杂志,33(15):6441-6451。 https://doi.org/10.1175/jcli-d-19-0413.1 10。 Cooley D.,Thibaud E.(2019)。 对高维度的依赖性分解。 Biometrika,106:587-604。 doi:10.1093/biomet/asz028。 11。 Hewitt J. †,Fix M.J.†,Hoeting J.A.,Cooley D.S. (2019)。 通过加权的可能性,潜在的空间极端模型提高了回报水平的估计。 jabes; 24:426-443。 doi:10.1007/s13253-019-00356-4 12。 Huang W.K.,Cooley D.S.,Ebert-upho虫,Chen C.,Chatterjee S.(2019)极端依赖的新探索工具:CHI网络和年度极好网络。 jabes; 24:484-501。 doi:10.1007/s13253-019-00356-4 13。 Cooley D.,Thibaud E.,Castillo F.,Wehner M.F. (2019)。 一种非参数方法,用于极端双变量超级概率的隔离,22:373-390; doi:10.1007/s10687-019-00348-0。 14。 Timmermans B.,Wehner M.,Cooley D.,O'Brien T.,Krishnan H.(2018)。 网格降水数据集中极端的一致性。 气候动力学,52:6651-6670。 doi:10.1007/s00382-018-4537-0。 15。https://doi.org/10.1002/env.2656 8。Yuen R.,Stoev,S.,Cooley D.(2020)极高价值的分布鲁棒推断。保险:数学与经济学,92:70-89。 https://doi.org/10.1016/j.insmatheco.2020.03.003 9。江Y.,Cooley D.,Wehner M.P. (2020)主要成分分析,用于极端和对美国降水的应用。 气候杂志,33(15):6441-6451。 https://doi.org/10.1175/jcli-d-19-0413.1 10。 Cooley D.,Thibaud E.(2019)。 对高维度的依赖性分解。 Biometrika,106:587-604。 doi:10.1093/biomet/asz028。 11。 Hewitt J. †,Fix M.J.†,Hoeting J.A.,Cooley D.S. (2019)。 通过加权的可能性,潜在的空间极端模型提高了回报水平的估计。 jabes; 24:426-443。 doi:10.1007/s13253-019-00356-4 12。 Huang W.K.,Cooley D.S.,Ebert-upho虫,Chen C.,Chatterjee S.(2019)极端依赖的新探索工具:CHI网络和年度极好网络。 jabes; 24:484-501。 doi:10.1007/s13253-019-00356-4 13。 Cooley D.,Thibaud E.,Castillo F.,Wehner M.F. (2019)。 一种非参数方法,用于极端双变量超级概率的隔离,22:373-390; doi:10.1007/s10687-019-00348-0。 14。 Timmermans B.,Wehner M.,Cooley D.,O'Brien T.,Krishnan H.(2018)。 网格降水数据集中极端的一致性。 气候动力学,52:6651-6670。 doi:10.1007/s00382-018-4537-0。 15。江Y.,Cooley D.,Wehner M.P.(2020)主要成分分析,用于极端和对美国降水的应用。气候杂志,33(15):6441-6451。 https://doi.org/10.1175/jcli-d-19-0413.1 10。Cooley D.,Thibaud E.(2019)。对高维度的依赖性分解。Biometrika,106:587-604。doi:10.1093/biomet/asz028。11。Hewitt J. †,Fix M.J.†,Hoeting J.A.,Cooley D.S. (2019)。 通过加权的可能性,潜在的空间极端模型提高了回报水平的估计。 jabes; 24:426-443。 doi:10.1007/s13253-019-00356-4 12。 Huang W.K.,Cooley D.S.,Ebert-upho虫,Chen C.,Chatterjee S.(2019)极端依赖的新探索工具:CHI网络和年度极好网络。 jabes; 24:484-501。 doi:10.1007/s13253-019-00356-4 13。 Cooley D.,Thibaud E.,Castillo F.,Wehner M.F. (2019)。 一种非参数方法,用于极端双变量超级概率的隔离,22:373-390; doi:10.1007/s10687-019-00348-0。 14。 Timmermans B.,Wehner M.,Cooley D.,O'Brien T.,Krishnan H.(2018)。 网格降水数据集中极端的一致性。 气候动力学,52:6651-6670。 doi:10.1007/s00382-018-4537-0。 15。Hewitt J.†,Fix M.J.†,Hoeting J.A.,Cooley D.S.(2019)。通过加权的可能性,潜在的空间极端模型提高了回报水平的估计。jabes; 24:426-443。doi:10.1007/s13253-019-00356-4 12。Huang W.K.,Cooley D.S.,Ebert-upho虫,Chen C.,Chatterjee S.(2019)极端依赖的新探索工具:CHI网络和年度极好网络。 jabes; 24:484-501。 doi:10.1007/s13253-019-00356-4 13。 Cooley D.,Thibaud E.,Castillo F.,Wehner M.F. (2019)。 一种非参数方法,用于极端双变量超级概率的隔离,22:373-390; doi:10.1007/s10687-019-00348-0。 14。 Timmermans B.,Wehner M.,Cooley D.,O'Brien T.,Krishnan H.(2018)。 网格降水数据集中极端的一致性。 气候动力学,52:6651-6670。 doi:10.1007/s00382-018-4537-0。 15。Huang W.K.,Cooley D.S.,Ebert-upho虫,Chen C.,Chatterjee S.(2019)极端依赖的新探索工具:CHI网络和年度极好网络。jabes; 24:484-501。doi:10.1007/s13253-019-00356-4 13。Cooley D.,Thibaud E.,Castillo F.,Wehner M.F. (2019)。 一种非参数方法,用于极端双变量超级概率的隔离,22:373-390; doi:10.1007/s10687-019-00348-0。 14。 Timmermans B.,Wehner M.,Cooley D.,O'Brien T.,Krishnan H.(2018)。 网格降水数据集中极端的一致性。 气候动力学,52:6651-6670。 doi:10.1007/s00382-018-4537-0。 15。Cooley D.,Thibaud E.,Castillo F.,Wehner M.F.(2019)。一种非参数方法,用于极端双变量超级概率的隔离,22:373-390; doi:10.1007/s10687-019-00348-0。14。Timmermans B.,Wehner M.,Cooley D.,O'Brien T.,Krishnan H.(2018)。网格降水数据集中极端的一致性。气候动力学,52:6651-6670。doi:10.1007/s00382-018-4537-0。15。修复M.†,Cooley D.,Sain S.R.,Tebaldi C.(2018)。在RCP8.5和RCP4.5下,美国降水极端的比较与模式缩放的应用。气候变化,146(3),335-347。doi:10.1007/s10584-016-1656-7。
主要关键词