简介 自 1978 年唐纳德·J·凯斯勒和伯顿·库尔帕莱斯发表论文《人造卫星的碰撞频率:碎片带的形成》以来,太空垃圾一直是太空参与者关注的重要问题。尽管迄今为止在碎片清除方面采取的行动很少,但该论文引发了数十年的研究,这些研究描述了外层空间碎片的数量、类型和轨道,以及制定了世界各地认可的自愿碎片减缓标准。当今现有的大部分太空垃圾都是推进剂爆炸或蓄意破坏行为的结果。已知最大的碎片产生事件是 2007 年中国的反卫星 (ASAT) 试验,其中 SC-19 动能拦截弹故意摧毁了一颗中国气象卫星。1 为了提供关于太空垃圾寿命的参考点,目前在轨道上运行的最古老的碎片是美国先锋 1 号卫星。先锋 1 号于 1958 年发射升空,进入中地球轨道 (MEO),并将在该轨道上停留至少 200 年,直到自然衰减回地球大气层或在此之前被故意脱离轨道。2
我们提出了一个准多项式时间经典算法,用于估计在热相变点以上温度下量子多体系统的配分函数。众所周知,在最坏情况下,同样的问题在该点以下是 NP 难的。结合我们的工作,这表明量子系统相位的转变也伴随着近似难度的转变。我们还表明,在相变点以上的 n 个粒子系统中,距离至少为 Ω(log n)的两个可观测量之间的相关性呈指数衰减。当哈密顿量具有交换项或在一维链上时,我们可以将 log n 的因子改进为常数。我们结果的关键是用配分函数的复零点来表征相变和系统的临界行为。我们的工作扩展了 Dobrushin 和 Shlosman 的开创性工作,该工作涉及经典自旋模型中相关性衰减与自由能解析性之间的等价性。在算法方面,我们的结果扩展了 Barvinok 提出的一种用于解决量子多体系统经典计数问题的新方法的范围。
使用单个电子或μ子事件和处于终态的喷流来测量顶夸克对 ( t ¯ t ) 的极化和自旋关联。测量基于 CMS 实验收集的 LHC 在 ffiffiffi sp ¼ 13 TeV 处的质子-质子碰撞数据,对应于积分光度 138 fb − 1 。通过对数据进行分箱似然拟合,同时提取极化矢量和自旋关联矩阵的所有系数。测量是全面进行的,并包含其他可观测量,例如 t ¯ t 系统的质量和 t ¯ t 静止框架中的顶夸克散射角。测得的极化和自旋关联与标准模型一致。从测得的自旋关联中,应用佩雷斯-霍罗德基标准得出关于 t ¯ t 自旋纠缠的结论。标准模型预测在生产阈值和 t ¯ t 系统质量较高时,t ¯ t 态将发生纠缠自旋。这是首次在高 t ¯ t 质量事件中观察到纠缠,其中大部分 t ¯ t 衰变是空间分离的,预期和观测显著性均高于 5 个标准差。
使用单个电子或μ子事件和终态喷流来测量顶夸克对 (tt) 的极化和自旋关联。测量基于 CMS 实验在√ s = 13 TeV 下收集的 LHC 质子-质子碰撞数据,对应于积分光度 138 fb − 1 。通过对数据进行分箱似然拟合,同时提取极化矢量和自旋关联矩阵的所有系数。测量是全面进行的,并包含其他可观测量,例如 tt 系统的质量和 tt 静止框架中的顶夸克散射角。测得的极化和自旋关联与标准模型一致。从测得的自旋关联,应用佩雷斯-霍罗德基标准得出关于 tt 自旋纠缠的结论。标准模型预测在生产阈值和 tt 系统高质量时 tt 态的纠缠自旋。这是首次在高 tt 质量事件中观察到纠缠,其中大部分 tt 衰变是空间分离的,预期和观察到的显著性均高于 5 个标准差。
我们在实验和数字上研究多部分纠缠状态的嘈杂演化,重点是通过云访问的超导量设备。我们发现,动力学的有效模式需要一个由随机电荷 - 偏向波动引起的连贯频移。我们介绍了一种方法,该方法使用扩展的马尔可夫环境建模了电荷 - 比值拆分。这种方法在数十个量子位上是可扩展的,使我们能够有效地模拟某些大型多Quipit状态的耗散动力学。探测越来越大,更复杂的初始状态的连续时间动力学,在环形状态下,最多12个耦合量子量,我们获得了实验和模拟的良好一致性。我们表明,基本的多体动力学会产生稳定器的衰减和复兴,这些动力在量子误差校正的背景下广泛使用。此外,我们使用定制的动力学去耦序列来证明两数Qubit的相互作用(串扰)的缓解。我们的噪声模型和数值方法对于提高对误差纠正和缓解的理解并邀请进一步研究其动态可能是有价值的。
摘要条件相互信息(CMI)i(a:c | b)量化给定a和c之间共享的相关量b。因此,它是多部分场景中两分相关性的更一般的量化符,在量子马尔可夫链理论中起着重要作用。在本文中,我们对CMI在不同温度下在两个浴场之间放置在两个浴场之间的量子链的非平衡状态(NESS)中的CMI行为进行了详细研究。这些结果用于阐明弹道和扩散运输方式背后的机制,以及它们如何影响链条不同部分之间的相关性。我们对在边界处受到本地Lindblad散射剂的一维纤维链的特定情况进行研究。此外,该链在每个地点还受到自一致的储层,这些储层用于调整弹道和扩散之间的传输。结果,我们发现CMI独立于弹道制度中的链尺寸L,但在扩散情况下用L衰减代数。最后,我们还展示了如何使用这种缩放来讨论非平衡稳态中局部热化的概念。
我们对封闭多体量子系统中二点相关函数(也称为动态响应函数或格林函数)的时间行为给出了严格的分析结果。我们表明,在一大类平移不变模型中,相关函数在后期时间分解 ⟨ A ( t ) B ⟩ β →⟨ A ⟩ β ⟨ B ⟩ β ,从而证明耗散源于系统的幺正动力学。我们还表明,对于具有一般光谱的系统,围绕该后期值波动受热系综纯度的限制,热系综纯度通常随着系统规模的增加而呈指数衰减。对于自相关函数,我们提供了它们达到因式分解的后期时间值的时间上限。值得注意的是,这个界限只是局部期望值的函数,并且不会随着系统规模的增加而增加。我们给出数值示例,表明此界限在不可积模型中是一个很好的估计,并论证了出现的时间尺度可以用新兴的涨落耗散定理来理解。我们的研究扩展到其他类型的二点函数,例如对称函数和线性响应理论中出现的 Kubo 函数,我们为其给出了类似的结果。
微弱的相互作用颗粒或FIP是假设的颗粒,其质量低于电动级量表,并与SM颗粒耦合到足够小,以至于以前的实验不受限制。取决于FIPS的性质,它们可以解决标准模型中的当前问题,例如中微子振荡,暗物质和宇宙的重子不对称。在过去的十年中,对FIP的兴趣已显着增加[1,2],从而提出了各种实验来寻找它们。假设FIP质量范围为O(1-10 GEV),则该实验的理想设施是CERN SPS,因为它提供了具有较大质子强度的E P = 400 GEV的质子束相对较高的质子束。在与目标碰撞中,可以在下游实验中大量产生和检测FIP。最近提议将三个实验安装在SPS的ECN3设施:Ship [3],Shadows [4]和Hike [5](另请参见最近的报告[6])。在撰写本文时,这些提案的选择和审查过程正在进行中。远足可能以两种模式运行:KAON模式,它将探索以Kaons的罕见过程中出现的新物理学和Beam Dump模式,这将允许搜索腐烂
我们考虑为作用在量子电路上的通用量子噪声设计合适的量子误差校正程序(QEC)程序的问题。通常,没有分析通用程序来获得编码和校正统一门,如果噪声未知并且必须重建噪声,问题甚至更难。现有过程依赖于变分的量子算法(VQA),并且由于成本函数的梯度的大小随量子数而衰减,因此很难训练。我们使用基于量子1(QW 1)的量子Wasserstein距离的成本函数来解决此问题。在量子信息处理中通常采用的其他量子距离方面,QW 1缺少单一不变性属性,这使其成为避免被困在本地最小值中的合适工具。专注于一个简单的噪声模型,该模型已知确切的QEC解决方案,并且可以用作理论基准,我们进行了一系列数值测试,这些测试表明如何通过QW 1指导VQA搜索,确实可以显着提高成功培训的可能性,并在使用恢复状态的情况下,以实现的态度来实现会议的方法。
如果暗物质由轴组成,则在暗物质光环的核心中形成轴恒星。这些恒星在临界质量上方不稳定,腐烂到加热层间介质的无线电光子,为轴支接间接检测提供了新的通道。我们最近提供了由于轴恒星合并引起的轴衰变速率的第一个准确计算。在这项工作中,我们展示了有关CMB光学深度的现有数据如何导致质量范围10-14 eV≲MA≲MA≲10-8eV的轴突光子耦合的强大限制。轴恒星的衰减导致在黑暗时期内有效地对播层培养基进行有效的离子。通过将这种非标准电源与汤姆森光学宽度的普朗克遗产测量值进行比较,我们表明,对于我们的轴突星级的基准模型,排除了10-14 Gev-1 geV-1 geV-1 geV-1≲gaγγ10-10geev -1。在高红移处21cm中性氢的21厘米发射的未来测量可能会通过一个数量级或更高的序列提高该限制,从而在参数空间中对轴突暗物质的互补间接约束也是由直接检测haloscopes靶向的。