ElenaFernándezTorres摘要结核病(TB)仍然是全球重大的健康挑战,由于多药耐药性结核分枝杆菌(MTB)的兴起而加剧。由于抗性机制而导致的现有药物的效率低下需要新颖的药物靶标和优化的药物输送系统。这项研究旨在使用CRISPR干扰(CRISPRI)筛查确定MTB中的必要药物靶标,并评估基于微晶纤维素(MCC)的配方效应以持续药物递送。使用DCAS9介导的转录抑制构建了一个基因组 - 宽CRISPRI文库,并使用qPCR和RNA测序(RNA-Seq)评估了基因敲低效率。使用肉汤稀释测定法和菌落形成单位(CFU)枚举评估了基因抑制对细菌存活和药物敏感性的影响。基于MCC的Isoniazid制剂是使用湿的颗粒方法开发的,并通过扫描电子显微镜(SEM),X射线衍射(XRD)和傅立叶变换红外光谱(FTIR)来表征。使用USP溶解设备II评估了体外药物释放曲线,并进行了统计分析,包括ANOVA和Pearson相关性,以确定重要的趋势。结果表明,高CRISPRI敲低效率与降低的细菌存活率相关(r = -0.78,p <0.0001),表明成功鉴定了基本基因。细菌存活与利福平MIC之间的正相关(r = 0.61)证实,敲低会影响药物敏感性。基于MCC的制剂显示在24小时内持续释放药物,在MCC药物释放和细菌存活之间存在很强的负相关(-0.68),证实了延长的抗菌活性。该研究得出结论,CRISPRI是结核病药物靶标识别的有力工具,而基于MCC的配方为持续药物递送提供了有希望的策略。未来的研究应在体内药代动力学,全基因组测序和先进的药物携带者中整合,以进一步优化结核病治疗策略。关键字:结核病,CRISPR干扰,结核分枝杆菌,基因敲低,细菌存活,微晶纤维素,耐药性,持续药物释放,药物释放,精确药物,精密医学引起的结核病(TB),由Mycobacterium witter(Mimabacterium witter)造成了1.超过100个全球的造成(Mimobacterium witter and Fresprim andim Million Millionb)(Mim Million Millionb),是一个1. Mimb)。每年死亡(Samukawa等,2022)[1]。耐多药(MDR-TB)和广泛的耐药性结核(XDR-TB)的出现增加了对新型治疗策略的迫切需求(Cheung等,2021)[3]。传统的药物发现方法由于细菌代谢,休眠机制和内在耐药性的复杂性而难以确定新的有效靶标(Rock等,2016)[2]。在响应中,CRISPR干扰(CRISPRI)技术已成为鉴定和验证细菌生存,耐药性和代谢脆弱性所需基因基因的革命性工具(Yan等,2022)4 []。CRISPRI利用催化死亡的CAS9(DCAS9)酶选择性地抑制基因表达而无需诱导双链断裂,从而在活细菌细胞中实现了高通量药物靶标筛查(McNeil等人,2021年)[3]。虽然CRISPRI已广泛用于癌症研究和细菌遗传学,但通过鉴定出新的可药物靶标和抗生素协同作用来增强结核病药物发现的潜力仍未得到充分激发(Choudhery等,2024)[5]。除了确定新药靶标外,改善药物输送系统对于增强治疗功效和患者依从性至关重要(Kalita等,2013)[6]。当前的结核病药物治疗方案很长(6-9个月),导致辍学率高,治疗不完全,
药物输送是施用药物或其他药物化合物以达到治疗作用的过程。在过去的几十年中,随着该系统的使用,药物释放的速度以及医生的药物控制是可能的。分层双氢氧化物(LDHS)是一组具有结构的阴离子粘土,它是具有良好药物释放控制特性的层。在这项工作中,进行了在Zn 2 al-ldH中介导的药物加巴喷丁的分子模拟(量子)和(分子动力学)。首先,通过DFT方法模拟了建模的Gabapentin分子。研究了从量子研究中提取的特性,例如部分分子电荷和分子轨道,然后在设计了用于Gabapentin-Zn 2 al-LDH组合的特殊细胞后,进行了经典力学和分子动力学模拟。最后,计算了重要特性,例如X射线衍射比较。实验(过去的工作)。Zn 2 al-LDH纳米杂化的表征结果还表明,X射线衍射与模拟XRD(D 003 =8.74Å)之间存在良好的一致性,而药物的角度分布相对水平。根据分子动力学模拟,均方根位移或MSD的结果(模拟药物输送)显示,从Zn 2 al-LDH杂交结构(每次时间步长0.11水强度与0.07的药物)中,水分子的释放速度快于Zn 2 al-LDH混合结构的药物分子快。
帕特里夏·科西姆(Patricia Kosseim)的交付主题演讲,安大略省IPC隐私日活动的信息和隐私专员2025年1月28日,宠物的力量:增强隐私技术的土地确认大家早上好,并感谢您今天加入我们。我想恭敬地承认,当我们聚集在这里时,我们将在许多国家的传统领土上开会,包括信贷的密西沙加,Anishnabeg,Chippewa,chippewa,haudenosaunee和Wendat人民。我们还承认,多伦多最初被命名为Tkaronto,意思是:“水中有树木的地方。”它被条约13与信用的密西沙加签署。我们很高兴能在这片土地上工作和居住,这是许多多样化的原住民,因纽特人和梅蒂斯人的家园。我们提供这片土地承认,以承认,尊重和尊重这一领土,条约,原始居民,他们的祖先以及他们与这片土地的历史性联系。欢迎欢迎大家到2025年隐私日。这是一个国际认可的一天,致力于提高人们对保护个人信息和隐私的重要性的认识。为了意识到这一目标,当今我们活动的主题是 - 宠物的力量:隐私增强技术。我想对我们同意参加今天的活动的六位小组成员表示热烈欢迎,以及在这里和网上加入我们的1,700多人。我们正在就有关增强隐私技术或宠物的隐私技术的令人兴奋的讨论,以及他们如何解决当今组织面临的一些最紧迫的隐私问题。我也想欢迎我们的法语参与者!今天的网络扩散将同时翻译成法语。今天的活动也将发布在您的YouTube频道上,以供将来观看。创新和隐私在当今活动的精神上增强技术,让我引用哈佛商学院教授西奥多·莱维特(Theodore Levitt)说:
由国家机关响应邀请而确定,通过立法设想的任何方式签订创收合同,从而形成国家机关与第三方之间的法律协议,为国家机关创造收入,包括但不限于资产租赁和处置以及特许合同,但不包括直接销售和通过公开拍卖处置资产;(e)“本法”是指 2000 年《优惠采购政策框架法》(第 2001 号法案)。
该系统可以控制药物释放到血液中的速度,或将药物直接靶向特定细胞或组织,避开可能造成伤害的区域。这在癌症等疾病的情况下尤为重要,因为靶向药物输送对于攻击癌细胞而不伤害健康细胞至关重要。药物输送系统有多种类型,每种系统旨在满足不同的治疗需求。这些系统大致可分为传统系统和先进系统。口服给药是最常见和传统的给药方法。药物以药片、胶囊或液体的形式经口服用,并通过胃肠道吸收。口服给药的主要优点是方便,但它也存在视觉方面的问题,例如吸收的多变性——肝脏在药物到达血液之前就将其代谢掉。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年1月27日。 https://doi.org/10.1101/2023.10.13.562311 doi:Biorxiv Preprint
30 多年来,通过皮肤和透皮给药途径输送药物的无痛、非侵入性方法得到了广泛的应用,因为它降低了口服或注射可能引起的药物过量风险。为了了解这种药物输送途径的特殊性,我们将简要回顾一下皮肤,包括其结构和影响药物扩散到皮肤中的参数,然后讨论改善皮肤药物输送的策略。在用于局部皮肤和透皮应用的众多现有系统中,本综述将重点介绍由水凝胶制成的药物输送系统的突破。具体来说,我们将首先介绍使用水凝胶作为创新药物输送载体来携带活性成分并穿透皮肤屏障。我们将讨论水凝胶的结构和改善药物输送所需掌握的物理化学参数,以及水凝胶的药物包封和释放目的。在最后一部分,我们将回顾水凝胶作为药物形式与其他载体(如乳液、脂质纳米颗粒、囊泡、胶囊和聚合物或无机纳米颗粒)的用途,适用于增强皮肤渗透和保护药物,以及可能限制其使用的副作用。
与继续主导整个医药市场的化学药品相比,蛋白质疗法具有 14 更高的特异性、更高的活性和更低的毒性的优势。虽然几乎所有现有的治疗性蛋白质 15 都是针对可溶性或细胞外靶标开发的,但蛋白质进入细胞并靶向细胞内 16 区室的能力可以显著拓宽它们对大量现有靶标的效用。鉴于它们的物理、化学、17 生物不稳定性可能会引起不良影响,并且它们穿过细胞膜的能力有限,因此需要递送 18 系统来充分发挥它们的生物潜力。在这种情况下,作为天然蛋白质纳米载体,19 细胞外囊泡 (EV) 前景广阔。然而,如果不是天然存在的,将感兴趣的蛋白质 20 带入 EV 并非易事。在这篇综述中,我们将探讨将外在蛋白质装入 EV 的方法,21 并将这些天然载体与其接近的合成对应物脂质体/脂质纳米颗粒进行比较,以诱导 22 细胞内蛋白质递送。 23 24 25 关键词:外泌体 - 微囊泡 - 治疗性蛋白质 - 细胞质递送 - 脂质体 - 大分子 26 递送 - 矢量化 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
我们考虑使用多个移动代理将包裹从指定源集体递送到图中指定目标位置的问题。每个代理从图的某个顶点开始;它可以沿着图的边缘移动,并且可以在移动过程中从一个顶点拾起包裹并将其放在另一个顶点。但是,每个代理的能量预算有限,只能遍历长度为 B 的路径;因此,多个代理需要协作才能将包裹运送到目的地。给定图中代理的位置及其能量预算,寻找可行移动计划的问题称为协作递送问题,之前已经对其进行了研究。先前结果中的一个悬而未决的问题是,当递送必须遵循预先给定的固定路径时会发生什么。虽然这种特殊约束减少了可行解决方案的搜索空间,但我们表明寻找可行计划的问题仍然是 NP 难题(与原始问题一样)。我们考虑该问题的优化版本,即在给定代理的初始位置的情况下,要求每个代理的最佳能量预算 B,从而实现可行的交付计划。与该问题的一般版本已知结果相比,我们证明了该问题的固定路径版本存在更好的近似值(至少对于每个代理单次拾取的限制情况)。我们为有向和有向路径提供了多项式时间近似算法