虽然大脑中的感觉表示取决于上下文,但尚不清楚如何在生物物理级别实现此类调制,以及如何在层次结构中进一步处理层可以为每个可能的contex-tum-tual状态提取有用的功能。在这里,我们证明了树突状n-甲基-D-天冬氨酸尖峰可以在生理约束中实施对馈送处理的上下文调节。这种神经元特定的调制措施利用了以稳定的馈电权重编码的先验知识,以实现跨环境的转移学习。在具有上下文独立的进发pefferward权重的生物物理逼真的神经元网络中,我们表明对树突分支的调节输入可以通过HEBBIAN,错误调查的学习规则解决线性不可分割的学习问题。我们还证明了表示表示的局部预测是源于不同输入的,还是来自相同输入的不同上下文调制,导致表示跨处理层的分层馈电权量的表示,以适应多种环境。
抽象的背景肿瘤靶向疗法会引起令人印象深刻的肿瘤消退,但耐药的出现限制了患者的长期生存益处。几乎没有有关髓样细胞网络的作用,尤其是在肿瘤靶向治疗过程中的树突状细胞(DC)的信息。方法,我们研究了肿瘤微环境(TME)(TME)和DYMM.3A临床瘤小鼠模型中的治疗介导的免疫学变化(TME)和淋巴结淋巴结(LN)(LN)(使用V-Raf Merine sarcoma sarcomAcomAcomAcomAcomAma viral Oncogene vyry b(braf)v600e v600e vyror intertortiation from-dimantiation frout in Cymantion v600e v600e vyror intertination cy in多重免疫组织化学。这与RNA测序和细胞因子定量相辅相成,以表征肿瘤的免疫状态。通过在肿瘤小鼠中耗尽CD4 +或CD8 + T细胞来研究T细胞在肿瘤靶向治疗过程中的重要性。肿瘤抗原特异性T细胞反应的特征是在体内T细胞增殖测定中进行,并使用缺乏CDC1的BATF3 - / - 小鼠评估常规1型DC(CDC1)对肿瘤靶向治疗期间T细胞免疫的贡献。结果我们的发现表明,BRAF抑制剂治疗增加了肿瘤免疫原性,这反映了与免疫激活相关的基因上调。T细胞增添的TME包含更高数量的活化的CDC1和CDC2,还包含表达CCR2的单核细胞。同时,靶向肿瘤的治疗增强了肿瘤排出的LN迁移,活化的DC亚群的频率。更重要的是,我们在肿瘤和LN中确定了表达FC伽马受体I(FCγRI)/CD64的CDC2群体,该群体显示出高水平的CD40和CCR7,表明参与T细胞介导的肿瘤免疫。仅在CDC1缺陷小鼠模型中仅部分损失治疗反应而强调了CDC2的重要性。CD4 +和CD8 + T细胞对于治疗反应都是必不可少的,因为它们各自的耗竭受损的治疗
在正常的生理稳定状态下,在没有危险或病原体信号的情况下,DC 具有天然的耐受性。这意味着它们不会激活 T 细胞来发起免疫反应。相反,它们促进 Treg 的发展。自然地,tolDC 表面的 MHC 和共刺激分子较少 [ 16 ]。它们还产生 IL-10 和 TGF-β,这两种物质以耐受性诱导和免疫调节而闻名 [ 16 ]。所有这些特性,以及 DC 和 T 细胞之间其他复杂的相互作用,都会导致自身耐受。另一方面,长期上调的促炎分子的存在会导致 DC 谱失衡,进而促进对自身抗原的免疫反应 [ 72 ]。DC-T 细胞通过表面分子以及分泌的细胞因子相互作用在实现抗病耐受性方面发挥着重要作用 [73]。因此,这些细胞相互作用在治疗自身免疫性疾病的疗法中具有极强的针对性也就不足为奇了。
基于摘要的树突状细胞(DC)的免疫疗法已应用于胶质母细胞瘤(GBM);但是,告知反应的生物标志物仍然对回应的理解仍然很差。我们在基于替莫唑胺的化学放疗后,研究了接受TFDC免疫疗法的患者,研究了替莫唑胺的化学疗法并确定预后因素的患者,研究了肿瘤融合的DC(TFDC)免疫疗法。纳入了28名GBM异氯酸盐脱氢酶(IDH)野生型(IDH-WT)的成年患者;给予127次TFDC疫苗注射(4.5±2.6次/患者)。GBM IDH-WT患者的5年生存率(24%)可观,验证了TFDC免疫疗法的临床活性,尤其是针对O 6-甲基鸟氨酸-DNA甲基转移酶(MGMT)非甲基化GBM(5年生存率:33%)。确定影响了用TFDC免疫疗法处理的GBM IDH -WT中总体生存(OS)的新因素,评估了临床参数,并进行了涉及转录组和外来分析的全面分子分析。MGMT启动子甲基化状态,肿瘤切除程度和疫苗参数(给药频率,直流和肿瘤细胞数以及融合比)与TFDC免疫疗法后的存活无关。老年以及术前和术后Karnofsky绩效状况与OS显着相关。肿瘤细胞中的HLA-A-A表达和缺乏CCDC88A,KRT4,TACC2和TONSL突变的缺乏与更好的预后相关。我们验证了TFDC免疫疗法对GBM IDH -WT的活性,包括化学抗性的MGMT启动子未甲基化病例。在GBM IDH -WT中预测TFDC免疫疗法功效的分子生物标志物的鉴定将促进3期试验中的设计和患者分层,以最大程度地提高治疗益处。
结果:舒尼替尼除了对肉瘤细胞系具有抗增殖和直接促凋亡作用外,还促使肉瘤细胞中 PD-L1 上调。有趣的是,舒尼替尼治疗的肉瘤细胞促使树突状细胞完全成熟,并增加其诱导肉瘤反应性 T 细胞产生 IFN- g 的能力。相反,未观察到对 T 细胞增殖和 T 细胞亚群组成的影响。此外,骨和滑膜肉瘤细胞系均通过树突状细胞诱导 Treg,但舒尼替尼治疗完全消除了 Treg 诱导。最后,当肉瘤细胞系被加载到树突状细胞中时,会诱导效应 T 细胞和 Treg 中的 PD-1 上调,这为使用 PD-1 阻断提供了理论依据。事实上,nivolumab 的 PD-1 阻断与舒尼替尼协同诱导产生 IFN- g 的效应 T 细胞。
摘要:磷酸二酯酶4(PDE4)的抑制剂是小分子药物,通过增加免疫细胞中cAMP的cAMP水平,引起了广泛的抗炎性效果。因此,PDE4抑制剂被积极地研究为以潜在炎症发病机理为特征的多种人类疾病中的治疗选择。树突状细胞(DC)是炎症和免疫反应的检查点,根据其激活状态而导致激活和衰减负责。本评论显示了证据表明,PDE4抑制剂通过减少炎症和Th1/Th17偏振细胞因子的分泌来调节炎症性DC激活,尽管尽管保留了共拟合分子的表达以及CD4+ T细胞激活潜力。此外,在存在PDE4抑制剂的情况下激活的DC会诱导效应T细胞的优先Th2偏斜,保留了Th2吸收趋化因子的分泌并增加T细胞调节介质的产生,例如IDO1,TSP-1,TSP-1,VEGGF-A,VEGGF-A和amphiregulin。最后,PDE4抑制剂选择性地诱导表面分子CD141/血栓瘤蛋白/BDCA-3的表达。这种细胞调整的结果是免疫调节的DC,与经典抗炎药物(如皮质类固醇)诱导的DC不同。将讨论对PDE4抑制剂治疗呼吸疾病(例如COPD,哮喘和COVID-19)的可能影响。
本文提出了一种非常快速的数值方法来模拟熔池凝固产生的微观结构,包括柱状枝晶晶粒和从熔体中成核的等轴晶粒的生长竞争。为了减少计算时间,提出了一种升级策略,该策略不是单独考虑每个枝晶,而是根据物理信息确定枝晶生长速度来定义平均凝固前沿。所提出的方法还依赖于枝晶的优选生长方向和有利取向的晶粒标准来确定哪些晶粒在竞争中幸存下来。显著减少自由度总数的关键贡献之一是使用 Voronoi 镶嵌而不是规则网格进行数值实现。结果已与实验数据以及相场和细胞自动机模拟进行了比较。模拟的微观结构与使用细胞自动机获得的微观结构相似,而计算成本却大大降低。此外,还提供了三维模拟的收敛分析,其热条件对应于金属增材制造,以展示如何在实践中使用本研究。
EB培养基是基于Stapel培养基(31,32)(表1)。要生成EB,使用细胞释放缓冲液(1/1000 EDTA/PBS)将IPSC细胞145酶脱离,并通过使用EB介质(表1)吸管以147天0-1(表2)来收集细胞146的团块146。通过70 µm大小的滤网将收集的细胞团过滤到50ml 148无菌管中。通过10ML血清学移液移除细胞团,并将其轻轻添加到超低149附件培养皿中(Sigma Aldrich,CAT#CLS3261),在37°C下保持在37°C,将5%CO2 150放置在轨道振荡器上(Scientififix,CAT#NBT-101SRC)旋转32rpm。每100mm 151盘,将2至3×10 6个细胞用于EB形成。媒体更改策略,包括152个分化因子的细节,如表2所述。为了在EB组153步骤中提高细胞活力,将0.2 nm岩石抑制剂Y-27632(Stemcell Technologies,#72307)添加到媒体154天0-1中,并从那时起停产。从第7天开始,IPSC衍生的造血细胞开始从胚胎体作为悬浮细胞出现。156
1慢性DIEASES的免疫生物学和免疫疗法,晚期生物科学研究所,Inserm U1209,CNRS UMR 5309,ÉgrenobleAlpes大学,38700 La Tronche,法国; k.lenogue@free.fr(k.l.); Alexandre.walencik@efs.sante.fr(A.W。); jean-paul.molens@efs.sante.fr(J.-P.M.); laurence.chaperot@efs.sante.fr(L.C。)2 PDC*线制药,38701法国格勒诺布尔; k.laulagnier@pdc-line-pharma.com 3 Research and Development Laboratory, French Establishment of Auvergne-Rh ô Ne-Alpes, 38701 Grenoble, France 4 HLA Laboratory, French Establishment of the Center-Pays de la Loire, 44011 Nantes, France 5 CRCINA, Inserm, University of Angers, 44011 Nantes,法国; houssem.benlalam@univ-nantes.fr 6 Onco-dermatology系,Chu Nantes,CIC 1413,Crcina,Nantes大学,法国44093 Nantes; brigitte.dreno@atlanmed.fr 7杜夫学院,卢旺天主教大学,比利时B-1200,B-1200; pierre.coulie@uclouvain.be 8癌症研究所,伦敦大学学院,伦敦WC1E 6BT,英国; martin.pule@ucl.ac.uk *通信:j.plumas@pdc-line-pharma.com
摘要 背景 将细胞毒性化疗或新型抗癌药物与 T 细胞调节剂相结合在治疗晚期癌症方面具有巨大的前景。然而,反应因肿瘤免疫微环境 (TIME) 而异。因此,显然需要药理学上可处理的 TIME 模型来剖析其对个体水平上单一和联合治疗反应的影响。 方法 我们在此建立了一种患者来源的乳腺癌外植体培养 (PDEC) 模型,该模型保留了原发性肿瘤的免疫背景,重现了细胞因子谱和 CD8+T 细胞细胞毒活性。 结果 我们探索了合成的致死性 BCL2 抑制剂维奈克拉+二甲双胍药物组合在体外的免疫调节作用,发现二甲双胍不能克服维奈克拉的淋巴细胞耗竭作用。相反,二甲双胍通过抑制线粒体复合物 I 来促进树突状细胞成熟,从而提高它们共刺激 CD4+T 细胞的能力,从而促进抗肿瘤免疫。结论我们的研究结果确立了 PDEC 是一种可行的模型,可用于在患者特定 TIME 的背景下识别抗癌药物的免疫调节功能。