与常规摄像机相比,事件摄像机代表了神经形态成像技术的值得注意的进步,由于其独特的优势,研究人员引起了很大的关注。但是,事件摄像机容易受到显着水平的测量噪声,这可能会对依赖于事件流的算法的性能降低,例如感知和导航。在这项研究中,我们介绍了一种新颖的方法来降级事件流,目的是填写未能准确反映出真正的对数强度变化的事件。我们的方法着重于事件的异步性质和时空特性,最终导致了新型异步时空事件的发展神经网络(ASTEDNET)。该网络直接在事件流上运行,规避将事件流转换为图像帧等密集格式的需求,从而保留其固有的异步性质。借助图形编码和时间卷积网络的原理,我们结合了时空特征注意机制,以捕获事件之间的时间和空间相关性。这可以使原始流中每个活动事件像素的分类为代表真正的强度变化或噪声。在多个数据集上针对最先进方法进行的比较评估表明,我们所提出的算法在消除噪声方面具有显着的效率和鲁棒性,同时将有意义的事件信息保留在场景中。
摘要 脑电图 (EEG) 信号是神经科学研究和临床应用(如脑机接口和神经系统疾病诊断)的基础。这些信号通常是神经活动和噪声的组合,来自各种来源,包括眼球和肌肉运动等生理伪影。在这种情况下,我们解决了区分神经活动和噪声相关来源的挑战。我们开发了一种在频域中运行的新型 EEG 去噪模型,利用有关噪声频谱特征的先验知识自适应地计算用于噪声分离的最佳卷积滤波器。该模型经过训练可以学习一种经验关系,将噪声和噪声信号的频谱特性与允许信号去噪的非线性变换联系起来。在 EEGdenoiseNet 数据集上的性能评估表明,所提出的模型根据时间和频谱指标都实现了最佳结果。发现该模型可以从输入的 EEG 数据中去除生理伪影,从而实现有效的 EEG 去噪。事实上,该模型的性能与基准模型相当甚至更好,证明可以有效去除肌肉和眼部伪影,而无需对特定类型的伪影进行任何训练。
多模式图像融合旨在结合不同的模态,以产生保留每种模式的合并特征的融合图像,例如功能亮点和纹理细节。为了利用强大的先验,并应对基于GAN的生成方法的不稳定培训和缺乏解释性等挑战,我们提出了一种基于脱氧扩散概率模型(DDPM)的新型融合算法。在DDPM采样框架下,融合任务是作为条件生成概率提出的,该框架被划分为无条件生成子问题和最大似然子问题。后者以层次的贝叶斯方式进行了模拟,并以潜在变量为单位,并通过期望最大化(EM)算法来推断。通过将推理解决方案集成到扩散采样迭代中,我们的方法可以从源图像中生成具有自然图像生成先验的高质量融合图像,并从源图像中产生交叉模式信息。请注意,我们所需的只是无条件的预训练的生成模型,不需要微调。我们的广泛实验表明,我们的方法产生了有希望的融合会导致红外可见的图像融合和医学图像融合。该代码可在https:// github上找到。com/zhaozixiang1228/mmif-ddfm。
生成可设计的蛋白质骨架已成为机器学习辅助方法的组成部分。与序列设计和结构预测器的过滤一起,它形成了计算蛋白设计管道的骨干。然而,当前的蛋白质结构发生器面临着大蛋白的重要局限性,需要在模型训练期间看不见的蛋白质设计任务进行再培训。为了解决第一个问题,我们介绍了Salad,这是一个蛋白质骨架产生的S-Al l- A tom a tom denoising模型。我们的模型在匹配或提高可设计性和多样性的同时,我们的模型要比最先进的速度要快,并为高达1,000个氨基酸的蛋白质长度生成可设计的结构。为了解决第二个问题,我们将沙拉与结构编辑相结合,这是扩展蛋白质denoising模型无法看见任务的能力的策略。我们将方法应用于各种蛋白质设计任务,从基序旧到多态蛋白质设计,证明了沙拉和结构编辑的功能。
音频denoising,尤其是在鸟类声音的背景下,由于持续的残留噪声,这仍然是一项具有挑战性的任务。传统和深度学习方法通常在人工或低频噪声中挣扎。在这项工作中,我们提出了VITV,这是一种新型的方法,利用了视觉变形(VIT)架构的力量。vitvs熟练地结合了分段技术,从而将清洁音频与复杂的信号混合物中解脱出来。我们的主要贡献涵盖了VITV的发展,引入了全面,远程和多规模的表示。这些贡献直接解决了常规方法固有的局限性。广泛的例子表明,VITV的表现要优于最先进的方法,将其定位为现实世界中鸟类声音降解应用的基准解决方案。源代码可用:https://github.com/aiai-4/vivts。索引术语:音频denoising,变压器,分段
摘要 - Audio DeNoisisiques是增强音频质量的重要工具。尖峰神经网络(SNN)为音频转化提供了有希望的机会,因为它们利用了脑启发的体系结构和计算原理来有效地处理并分析音频信号,从而通过提高的准确性和降低了计算机上的高空空间,从而实现了实时Denoo。本文介绍了Spiking-Fullsubnet,这是一种基于SNN的实时音频DeNoising模型。我们提出的模型不适合一种新型的封闭式尖峰神经元模型(GSN),以有效捕获多尺度的时间信息,这对于实现高赋予音频降解至关重要。此外,我们建议将GSN集成在优化的全snet神经架构中,从而实现了全频段和子带频率的有效处理,同时显着降低了计算的额外处理。与体系结构的进步一起,我们结合了一个基于度量歧视的损失函数,该功能有选择地增强所需的性能指标而不会损害他人。经验评估表明,尖峰全鞋的表现出色,将其排名为英特尔神经形态深噪声抑制挑战的轨道1(算法)的赢家。索引术语 - 语言denoising,尖峰神经网络,neu-Romorphic Computing,Audio Signal Processing
病理性脑损伤在脑图像中呈现出不同的外观,由于缺乏全面的数据和注释,很难训练监督检测解决方案。因此,在这项工作中,我们解决了无监督异常检测问题,仅使用健康数据进行训练,目的是在测试时检测未见的异常。许多当前方法采用具有限制性架构(即包含信息瓶颈)的自动编码器,这些自动编码器不仅会对异常部分进行不良重建,而且会对正常部分进行不良重建。相反,我们研究了经典的去噪自动编码器模型,这些模型不需要瓶颈,并且可以使用跳过连接来提供高分辨率保真度。我们设计了一种简单的噪声生成方法来升级低分辨率噪声,从而实现高质量的重建。我们发现,通过适当的噪声生成,去噪自动编码器重建误差可以推广到高强度病变分割,并达到脑 MRI 数据中无监督肿瘤检测的最新性能,击败了变分自动编码器等更复杂的方法。我们相信这为进一步研究无监督异常检测提供了强大且易于实施的基础。关键词:异常检测、无监督学习、自动编码器、去噪、MRI。
摘要:对于具有肌萎缩性侧面硬化症(ALS)的受试者,言语和非言语通知受到很大的损害。基于视觉诱发电位(SSVEP)的大脑计算机界面(BCIS)是成功的替代增强通信之一,可帮助ALS与他人或设备进行通信。对于实际应用,噪音的影响大大降低了基于SSVEP的BCI的性能。因此,开发基于SSVEP的强大BCI对于帮助受试者与他人或设备进行交流非常重要。在这项研究中,提出了基于噪声抑制的特征提取和深度神经网络,以开发出强大的基于SSVEP的BCI。为了抑制噪音的影响,提出了一种denoising自动编码器来提取降解功能。为了获得实用应用的可接受识别结果,深层神经网络用于发现基于SSVEP的BCI的决策结果。实验结果表明,所提出的方法可以有效地抑制噪声的影响,并且基于SSVEP的BCI的性能可以大大改善。此外,深神经网络的表现优于其他方法。因此,提出的基于SSVEP的BCI对实际应用非常有用。
摘要。在本文中,我们通过在一组局部相似性措施上最小化促进平滑度的函数,以比较给定图像的平均值以及在大量子框上比较一些候选图像,从而确定了给定的嘈杂图像。相关的凸优化问题具有大量的约束,这些约束是由kullback-leibler差异引起的扩展实现功能引起的。另外,这些非线性约束可以被重新重新构成AFFINE,这使该模型看起来更加易于处理。用于对模型的两种公式的数值处理(即原始限制和具有限制的原始公式),我们提出了一种相当普遍的增强拉格朗日方法,能够处理大量约束。提供了一种独立的,无衍生的全球融合理论,可以扩展到其他问题类别。对于在我们建议的图像denoising模型的设置中解决所得子问题的解决方案,我们使用合适的随机梯度方法。为了比较配方和相关的增强拉格朗日方法,提出了几个数值实验的结果。
Kush Vora Ninad Mehendale *计算机工程系电子系K.J Somaiya工程学院K.J.Somaiya工程学院孟买,印度孟买,印度kush.v@somaiya.edu ninad@somaiya.edu摘要 - 脑肿瘤是死亡的主要原因之一,因此,尽早诊断它们至关重要。 MRI是检测肿瘤的最有效诊断工具。 但是,热噪声,温度波动和其他伪影可能会产生嘈杂的MRI扫描,从而导致诊断不准确。 深度学习算法与图像处理技术结合使用,已在各种医学成像任务中有助于增强MRI图像。 我们的工作提出了一个带有两个编码器码头对的U-NET体系结构,用于降解MRI扫描,该扫描在通过注入合成高斯噪声生成的数据集上进行了细微的调整。 该模型将峰信号与噪声比(PSNR)从11.90提高到30.96。 提出的工作还提供了经验证据,表明拟议的deoising策略可将脑肿瘤的预测准确性提高近23%。 使用U-NET开发的去核技术将使放射科医生和计算机辅助诊断系统(CAD)在精确诊断疾病中通过产生清洁剂和更清晰的MRI扫描来使其受益。 关键字 - 图像增强,脱氧,U-NET,脑肿瘤,高斯噪声I. i ntroduction a脑肿瘤是一团异常的脑细胞。 封闭人脑的头骨非常坚硬,因此在这个紧密区域内的任何发展都会导致重大并发症。 随着这些肿瘤的生长,头骨内部的压力会增加,从而导致脑损伤。Somaiya工程学院孟买,印度孟买,印度kush.v@somaiya.edu ninad@somaiya.edu摘要 - 脑肿瘤是死亡的主要原因之一,因此,尽早诊断它们至关重要。MRI是检测肿瘤的最有效诊断工具。但是,热噪声,温度波动和其他伪影可能会产生嘈杂的MRI扫描,从而导致诊断不准确。深度学习算法与图像处理技术结合使用,已在各种医学成像任务中有助于增强MRI图像。我们的工作提出了一个带有两个编码器码头对的U-NET体系结构,用于降解MRI扫描,该扫描在通过注入合成高斯噪声生成的数据集上进行了细微的调整。该模型将峰信号与噪声比(PSNR)从11.90提高到30.96。提出的工作还提供了经验证据,表明拟议的deoising策略可将脑肿瘤的预测准确性提高近23%。使用U-NET开发的去核技术将使放射科医生和计算机辅助诊断系统(CAD)在精确诊断疾病中通过产生清洁剂和更清晰的MRI扫描来使其受益。关键字 - 图像增强,脱氧,U-NET,脑肿瘤,高斯噪声I. i ntroduction a脑肿瘤是一团异常的脑细胞。封闭人脑的头骨非常坚硬,因此在这个紧密区域内的任何发展都会导致重大并发症。随着这些肿瘤的生长,头骨内部的压力会增加,从而导致脑损伤。脑肿瘤分为两种不同类型。恶性(癌)和良性(非癌症)。这些肿瘤进一步分为原发性和继发性肿瘤(转移性肿瘤)。原发性脑肿瘤起源于大脑内部,但是当癌细胞从其他器官传播到大脑(肺部到大脑)时,转移性脑肿瘤就会发展。绝大多数原发性脑肿瘤都不癌。死亡率的第十个主要原因是脑肿瘤。在2020年,全球估计,有251,329人死于原发性恶性脑和中枢神经系统(CNS)肿瘤。今天在美国,估计有70万人受到原发性脑肿瘤的影响。这些肿瘤可能是致命的,并对生活质量产生重大影响。女性比男性更有可能获得任何类型的大脑或脊髓肿瘤,而男性则更有可能患上恶性肿瘤。这主要是因为某些类型的肿瘤在一种性别或另一种性别中更为普遍(例如,脑膜瘤在女性中更为常见)。患有恶性大脑或中枢神经系统肿瘤患者的5年生存率