推荐引用 推荐引用 G., Mohanapriya;Muthukumar S.;Santhosh Kumar S.;和 Shanmugapriya MM。“用于医学图像处理的卡尔曼布西滤波神经模糊图像去噪。”中智集合与系统 70, 1 (2024)。https://digitalrepository.unm.edu/nss_journal/vol70/iss1/19
扩散模型在产生各种自然分布的高分辨率,逼真的图像方面取得了巨大的成功。但是,他们的性能在很大程度上依赖于高质量的培训数据,这使得从损坏的样本中学习有意义的分布变得具有挑战性。此限制限制了它们在稀缺或昂贵的科学领域中的适用性。在这项工作中,我们引入了DeNoising评分蒸馏(DSD),这是一种出奇的有效和新颖的方法,用于训练低质量数据的高质量生成模型。DSD首先预修了一个扩散模型,专门针对嘈杂,损坏的样品,然后将其提炼成能够生产精制,干净的输出的单步生成器。传统上将得分蒸馏视为加速扩散模型的一种方法,但我们表明它也可以显着提高样本质量,尤其是从退化的教师模型开始时。在不同的噪声水平和数据集中,DSD始终提高生成性能 - 我们在图中总结了我们的经验证据1。此外,我们提供了理论见解,表明在线性模型设置中,DSD识别了干净的数据分散协方差矩阵的特征空间,并隐含地正规化了生成器。此透视图将蒸馏片重新升级为效率的工具,而且是改善生成模型的机制,尤其是在低质量的数据设置中。
我们通过受限的玻尔兹曼机器(RBMS)研究了二进制图像denoing的框架,该机器(RBMS)引入了二次无约束的二进制优化(QUBO)形式(QUBO)形式的降解目标,并且非常适合用于量子退火。通过平衡训练有素的RBM所学的分布与噪音图像派生的罚款术语来实现dieno的目标。假设目标分布已得到很好的近似,我们得出了惩罚参数的统计最佳选择,并进一步提出了经验支持的修改,以使该方法适合该理想主义假设。我们还在其他假设下表明,我们方法获得的denocer映像严格接近无噪声图像的图像比嘈杂的图像更接近无噪声图像。当我们将模型作为图像剥夺模型时,可以将其应用于任何二进制数据。由于QUBO公式非常适合在量子退火器上实现,因此我们在D-Wave Advantage机器上测试模型,并且还通过通过经典的启发式方法近似Qubo溶液来测试对于电流量子退火器太大的数据。
点云经常包含噪声和异常值,为下游应用带来障碍。在本文中,我们介绍了一种新颖的点云去噪方法。通过利用潜在空间,我们明确地发现噪声成分,从而可以提取干净的潜在代码。这反过来又有助于通过逆变换恢复干净点。我们网络中的一个关键组件是一个新的多层图卷积网络,用于捕获从局部到全局各个尺度的丰富几何结构特征。然后将这些特征集成到可逆神经网络中,该网络双射映射潜在空间,以指导噪声解缠结过程。此外,我们使用可逆单调算子来模拟变换过程,有效地增强了集成几何特征的表示。这种增强使我们的网络能够通过将噪声因素和潜在代码中的内在干净点投影到单独的通道上来精确区分它们。定性和定量评估均表明,我们的方法在各种噪声水平下都优于最先进的方法。源代码可在 https://github.com/yanbiao1/PD-LTS 获得。
摘要:在这项研究中,我们引入了一种新型的基于变压器的神经网络(DTNN)模型,用于预测锂离子电池的剩余使用寿命(RUL)。所提出的DTNN模型在准确性和可靠性方面显着优于传统的机器学习模型和其他深度学习档案。特别是,DTNN达到0.991的R 2值,平均百分比误差(MAPE)为0.632%,绝对RUL误差为3.2,比其他模型(例如随机森林(RF),决策树(DT),多层perceptron(MLP),REN NERTEN(RN),REN NERTIAL NERTIST(RN NERTIRER NERTIAL(RN))(RN)(rn)(RF)(RF)(RN)(RNN)(RNN)(RNN)(RNN NEFT)(RN NORN NERTER),RNN NOVERRENT NERTER,长期(RN)复发单元(GRU),Dual-LSTM和Decransformer。这些结果突出了DTNN模型在为电池RUL提供精确可靠的预测方面的效率,这使其成为各种应用中电池管理系统的有前途的工具。
为了人类的运气,与小型太阳能相比,太阳能较小。即使这些是个好消息,这也使训练能够建模太阳能活动的机器学习算法具有挑战性。因此,太阳能监视应用程序(包括量)是预测的,因此由于缺乏输入数据而征服。为了克服这个问题,可以利用生成深度学习模型来产生代表太阳活动的合成图像,从而补偿大事件的稀有性。本研究旨在开发一种可以生成太阳的合成图像,具有特定强度的能力。为了实现我们的目标,我们引入了一个脱氧概率模型(DDPM)。我们用SDO航天器上大气图像组件(AIA)仪器进行了精心制作的数据集训练它,该仪器特别是171Å带,该乐队捕获了冠状环,纤维,纤维,浮雕和活动区域的图像。使用Heliophysics事件知识库选择了来自AIA的浮动图像后,采用X射线测量来基于太阳量(a,b,c,m,x)对每个图像进行分类,从而允许对漏水事件进行时间定位。使用群集指标,FRéchetInception距离(FID)和F1分数评估生成模型性能。我们演示了最新的结果,可以产生太阳图像并进行两个使用合成图像的实验。第一个实验训练有监督的分类器以识别这些事件。第二个实验训练基本太阳能是预测指标。我们认为,这只是DDPM与太阳能数据使用的开始。实验证明了其他合成样本对解决不平衡数据集问题的有效性。仍然可以更好地了解太阳能竞赛中的DINOISING DI遇到的概率模型的发电能力是预测,并将其应用于其他深度学习和物理任务,例如AIA到HMI()图像翻译。
最近的视频介绍方法通过利用光学流以引导像素传播的参考帧或特征空间中的像素传播,从而实现了令人鼓舞的改进。但是,当蒙版面积太大并且找不到像素对应关系时,它们会产生严重的伪影。最近,Denois的扩散模型在产生多样化和高质量的图像时表现出了令人印象深刻的表现,并且已在许多作品中被用于图像插图。但是,这些方法不能直接应用于视频以产生时间连接的覆盖结果。在本文中,我们提出了一个名为Vipdiff的无训练框架,该框架在反向扩散过程中调节扩散模型,以产生时间连接的涂漆结果,而无需任何培训数据或对预训练的模型进行微调。Vipdiff将光流作为指导,从参考帧中提取有效的像素,以作为优化随机采样的高斯噪声的约束,并使用生成的结果来进一步的像素传播和条件生成。Vipdiff还可以通过不同的采样噪声产生各种视频介绍结果。实验表明,我们的Vipdiff在时空连贯性和保真度方面都超过了最先进的方法。
我们提出了一种新颖的视频异常检测方法:我们将从视频中提取的特征向量视为具有固定分布的随机变量的重新释放,并用神经网络对此分布进行建模。这使我们能够通过阈值估计估计测试视频的可能性并检测视频异常。我们使用DE-NONISE分数匹配的修改来训练视频异常检测器,该方法将训练数据注射噪声以促进建模其分布。为了消除液体高参数的选择,我们对噪声噪声级别的噪声特征的分布进行了建模,并引入了常规化器,该定期用器倾向于将模型与不同级别的噪声保持一致。在测试时,我们将多个噪声尺度的异常指示与高斯混合模型相结合。运行我们的视频异常检测器会引起最小的延迟,因为推理需要仅提取特征并通过浅神经网络和高斯混合模型将其前向传播。我们在五个流行的视频异常检测台上的典范表明了以对象为中心和以框架为中心的设置中的最先进的性能。
Matter-White物质分化(GM-WM),人工制品,清晰度和诊断信心。客观分析包括对噪声,对比度比率(CNR),signal-noise比率(SNR)的评估,后窝的伪影指数。结果进行了主观图像质量评估,与所有读者的所有类别中的FBP相比,与FBP相比,DLD与FBP相比持续出色。客观的图像质量分析显示,使用DLD用于所有扫描仪的噪声,SNR和CNR以及伪影指数的显着改善(p <0.001)。结论供应商深度学习deNoising al-gorithm在亚置以及与FBP重建相比的较小头部创伤的papaptigent的NCCT图像中提供了明显优于较高的结果。在所有五个扫描仪中都产生了这种效果。