。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年1月24日。 https://doi.org/10.1101/2025.01.22.634362 doi:Biorxiv Preprint
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要:界面结构和化学演变是电池和其他电化学系统安全性、能量密度和寿命的基础。在锂电沉积过程中,可能会出现局部非平衡条件,从而促进异质锂形态的形成,但直接研究这些条件具有挑战性,尤其是在纳米尺度上。在这里,我们绘制了锂电沉积过程中活性铜/电解质界面的化学微环境,并展示了一种新方法——原位冷冻低温电子显微镜 (cryo-EM),用于锁定纽扣电池中出现的结构。我们发现局部离子耗竭与锂晶须有关,但与平面锂无关,我们假设耗竭源于根部生长的晶须在生长界面消耗离子,同时限制离子通过局部电解质的传输。这可能导致危险的锂形态传播,即使在浓电解质中也是如此,因为离子耗竭有利于树枝状晶体的生长。因此,原位冷冻冷冻电镜可以揭示活性电化学界面处的局部微环境,从而能够直接研究能源设备运行过程中出现的特定地点的非平衡条件。
1伊利诺伊州伊利诺伊大学生物医学工程系,美国伊利诺伊州伊利诺伊州; 2美国伊利诺伊州伊利诺伊大学心理学系; 3伊利诺伊州伊利诺伊大学伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊州伊利诺伊大学运动机能学和营养系; 4加利福尼亚大学圣地亚哥分校儿科4; 5 Scripps海洋学研究所,加利福尼亚大学,美国加利福尼亚州,美国加利福尼亚州; 6美国伊利诺伊州伊利诺伊大学精神病学系; 7美国伊利诺伊大学伊利诺伊大学妇产科系; 8伊利诺伊州伊利诺伊大学,伊利诺伊州伊利诺伊州伊利诺伊大学生物信息学与定量生物学中心; *高级作者支持来源:R03HD095056 1U24DK131617-01(JAG)K12HD101373(BPB)Arnold O. Beckman O. Beckman O. Bernabé(851 s Morgan St. Chicago,IL 60607,(312)-996-5624,ponicalver@uic.edu)缩写:
1伊利诺伊大学生物医学工程系,美国伊利诺伊州伊利诺伊州伊利诺伊州60607; salver5@uic.edu(S.A.A. ); usvnagelli@gmail.com(联合国)2伊利诺伊州伊利诺伊大学心理学系,美国伊利诺伊州伊利诺伊州60607; ewenze4@uic.edu(e.s.w. ); pmaki1@uic.edu(p.m.m.) 3伊利诺伊大学伊利诺伊大学伊利诺伊大学运动机能学和营养系,美国伊利诺伊州60612; lwissl2@uic.edu(L.B.P. ); bbrain2@uic.edu(B.L. ); tussing@uic.edu(L.T.-H。)4美国加利福尼亚州圣地亚哥分校儿科,美国加利福尼亚州92093; jagilbert@health.ucd.edu 5 5 Scripps海洋学研究所,加利福尼亚大学圣地亚哥分校,CA 92037,美国6美国6号精神病学系,伊利诺伊大学,伊利诺伊大学,伊利诺伊州伊利诺伊大学,伊利诺伊州60612,美国7妇产科和妇科学系IL 60612,美国 *信件:norder@uic.edu;电话。 : +1-(312)-996-5624†这些作者对这项工作也同样贡献。1伊利诺伊大学生物医学工程系,美国伊利诺伊州伊利诺伊州伊利诺伊州60607; salver5@uic.edu(S.A.A.); usvnagelli@gmail.com(联合国)2伊利诺伊州伊利诺伊大学心理学系,美国伊利诺伊州伊利诺伊州60607; ewenze4@uic.edu(e.s.w.); pmaki1@uic.edu(p.m.m.)3伊利诺伊大学伊利诺伊大学伊利诺伊大学运动机能学和营养系,美国伊利诺伊州60612; lwissl2@uic.edu(L.B.P. ); bbrain2@uic.edu(B.L. ); tussing@uic.edu(L.T.-H。)4美国加利福尼亚州圣地亚哥分校儿科,美国加利福尼亚州92093; jagilbert@health.ucd.edu 5 5 Scripps海洋学研究所,加利福尼亚大学圣地亚哥分校,CA 92037,美国6美国6号精神病学系,伊利诺伊大学,伊利诺伊大学,伊利诺伊州伊利诺伊大学,伊利诺伊州60612,美国7妇产科和妇科学系IL 60612,美国 *信件:norder@uic.edu;电话。 : +1-(312)-996-5624†这些作者对这项工作也同样贡献。3伊利诺伊大学伊利诺伊大学伊利诺伊大学运动机能学和营养系,美国伊利诺伊州60612; lwissl2@uic.edu(L.B.P.); bbrain2@uic.edu(B.L.); tussing@uic.edu(L.T.-H。)4美国加利福尼亚州圣地亚哥分校儿科,美国加利福尼亚州92093; jagilbert@health.ucd.edu 5 5 Scripps海洋学研究所,加利福尼亚大学圣地亚哥分校,CA 92037,美国6美国6号精神病学系,伊利诺伊大学,伊利诺伊大学,伊利诺伊州伊利诺伊大学,伊利诺伊州60612,美国7妇产科和妇科学系IL 60612,美国 *信件:norder@uic.edu;电话。: +1-(312)-996-5624†这些作者对这项工作也同样贡献。
摘要肠道菌群负责人类健康中的重要功能。已经描述了肠道菌群与其他器官之间通过神经,内分泌和免疫途径之间的几个通信轴,并且肠道菌群组成的扰动与新兴疾病数量的发作和进展有关。在这里,我们分析了周围根神经节(DRG)和新生儿和年轻小鼠的骨骼肌肉,具有以下肠道菌群状态:a)无细菌(a)gnotobirotic,gnotobirotic,gnotobirotic s gnotobirotic seplatigy complatial gnotobirotic,用12个特定的肠道细菌菌株(Oligobiobiot)选择性地定居微生物群(CGM)。立体和形态计量学分析表明,肠道菌群的缺失会损害体细胞中间神经的发展,从而导致直径较小和甲基化轴突,以及较小的无叶子纤维。因此,DRG和坐骨神经转录组分析强调了一组差异表达的发育和髓鞘基因。有趣的是,Neuregulin1(NRG1)的III型同工型(已知是Schwann细胞髓鞘化至关重要的神经元信号)在年轻的成年GF小鼠中过表达,因此,转录因子早期生长反应2(EGR2)的表达,是由Schwann细胞表达的,由Schwann细胞表达的基本基因在Myelination Onserination Onserations of Myelination of Myelination of Myelination。最后,GF状态导致组织学萎缩性骨骼肌,神经肌肉连接的形成受损以及相关基因的失调表达。总而言之,我们首次证明了肠道微生物群调节对躯体周围神经系统的适当发展及其与骨骼肌的功能联系,从而表明存在一种新颖的“肠道微生物群 - 外周神经系统轴”。
抽象目的是检查影响尿酸尿酸氨基酸氨基酸氨基酸单钠动力学(MSU)晶体溶解的因素,该因子在随访痛苦患者的随访期间用双能计算机断层扫描(DECT)测量。使用基线膝盖和脚Dect扫描诊断为痛风的患者表现出MSU晶体体积≥0.1cm 3,至少包括一个随访DECT。Spearman的相关系数用于搜索6、12、18和24个月的基线MSU晶体体积的变化与血清尿酸尿酸盐(SU)水平之间的关联。使用线性混合模型评估了MSU晶体沉积物基线体积的百分比变化与解释变量之间的关联。结果包括62例患者(67.3±12.8岁; 53(85%)男性)累积104个随访DECT DECT扫描。总体而言,SU目标水平(<6.0和<5.0 mg/ dl)分别为48(77%)和36例(58%)患者。在MSU晶体体积的SU水平和百分比变化之间观察到了良好的相关性(r = 0.66; p <0.0001)。在达到<5.0 mg/dl SU目标的患者中,中位数下降的速度比达到≥5.0su <6.0 mg/dl的患者大:-85%(95%CI:-94%至-72%至-72%)与-40%至-40%至-57%至-57%至-222%; p <0.05)。在多变量分析中,多级系数为-0.06(95%CI:-0.08至-0.03,p <0.001),高血压(系数:41.87,41.87,95%CI:95%CI:16.38至67.18,P <0.01)和SU级别<5.001 MG. 95%CI:-70.93至-8.34,p = 0.02)是与MSU晶体体积变化显着相关的唯一变量。在达到<5.0 mg/dl su靶标的代数晶体晶体沉积患者中的结论比达到<6.0 mg/dl su靶标的<5.0 mg/dl su靶标提供了更广泛和快速的晶体溶解。
引言全身性红斑狼疮(SLE)代表了一种原型自身免疫性疾病,其特征是慢性炎症和进行性炎症相关的多个器官(包括儿童,关节和皮肤)的组织相关组织损伤(1)。SLE被认为是由于全身免疫耐受性破裂而导致的,患有SLE的患者表现出针对无处不在的核抗原(如双链DNA和组蛋白)的自身抗体(2)。b细胞在SLE的发病机理中似乎发挥了关键作用,在那里它们被认为是产生自身抗体的浆膜和浆细胞的前体,并在自动记忆B细胞的形式下提供了致病性免疫学记忆的基础,能够维持持续自动免疫性(3)。SLE的另一个标志是,在外周血单核细胞(PBMC)中,以增强多个IFN诱导基因表达的形式增加了I型IFN签名,这表明IFN在SLE开发中的另一个关键作用(4-6)。根据一系列导致I型IFN产生或重组I型IFN本身治疗增加的遗传疾病可以触发类似SLE的疾病病理学的发作(7,8)。I型IFN受体的阻滞已成为针对一部分SLE患者的有效疗法(9)。在一起,这些发现不仅引发了有关I型IFN的细胞来源和TAR的重要问题,而且还引发了触发因素和一系列因果关系,这些事件最终分别促进了SLE患者的IFN IFN产生和B细胞激活。先前对研究B细胞耗竭患者的临床试验产生了差异结果(10),这部分是由于组织B细胞对治疗性CD20抗体的响应效率低下(11)。同时,CD19 CAR T细胞已成为一种潜在的新型治疗工具,在B细胞淋巴瘤治疗期间,在抗体介导的B细胞耗竭方面表现出优势
调节性T(T Reg)细胞有助于免疫稳态,但抑制了对癌症的免疫反应。破坏T Reg细胞介导的癌症免疫抑制的策略已达到有限的临床成功,但是对治疗衰竭的非衍生机制知之甚少。通过对小鼠的T reg细胞靶向免疫疗法进行建模,我们发现CD4 + FOXP3-常规T(T Conv)细胞在耗尽Foxp3 + T Reg细胞时获得抑制功能,从而限制了治疗功效。foxp3 -t conver细胞在消融T reg细胞时采用T型细胞样转录曲线,并获得抑制T细胞激活和增殖的能力。sup-压力活性富含。在T型细胞耗竭后,CCR8 + T CORS细胞会经历全身性和肿瘤内激活和扩张,并介导IL-10-依赖性抑制抗肿瘤免疫。因此,T细胞内IL10的有条件缺失增强了小鼠T型细胞耗竭后的抗肿瘤免疫力,而IL-10信号传导的抗体阻断随着T reg细胞的耗竭协同以克服治疗耐药性。这些发现揭示了T Conv细胞在治疗性T型细胞耗竭后释放的T Cons细胞的二级免疫抑制层,并表明在T细胞谱系中更广泛考虑抑制功能以开发有效的T reg toR taR剂量剂量的治疗疗法。
adeno相关的病毒(AAV)向量已成为体内基因替代疗法的首选平台,并代表了治疗单基因疾病(如血友病)的最有希望的策略之一。然而,对基因转移的免疫反应在临床试验中阻碍了人类基因治疗。在过去的十年中,很明显,先天免疫识别为诱导抗原特异性反应提供了信号,以针对载体或转基因产物产生。尤其是,TLR9识别对静脉细胞类树突状细胞(PDC)中载体的DNA基因组的识别已被鉴定为关键因素。来自临床试验和临床前研究的数据在矢量基因组中实施CpG基序,作为免疫反应的驱动因素,尤其是CD8 + T细胞激活的驱动因素。在这里,我们证明了AAV capsid特异性CD8 + T细胞的交叉化是否取决于XCR1 +