摘要 关于碳纳米管-硅 MIS 异质结构的新研究表明,可利用器件绝缘层中厚度的不均匀性来增强其功能。在这项工作中,我们报告了一种器件的制造和特性,该器件由 n 型硅衬底上的单壁碳纳米管 (SWCNT) 薄膜组成,其中纳米管和硅之间的氮化物中间层已被刻蚀以获得不同的厚度。三种不同的氮化硅厚度允许在同一器件内部形成三个区域,每个区域都有不同的光电流和响应度行为。我们表明,通过选择特定的偏置,可以打开和关闭区域的光响应。这种特殊行为使该器件可用作具有电压相关活性表面的光电探测器。在不同偏置下对器件表面进行的扫描光响应成像突显了这种行为。
本研究报告了对凸块金属化下 Ti/Pt/Au 上放置的铟微凸块/柱内部均匀性的研究。这对于连接电阻率、长期耐用性和后续混合工艺(例如芯片键合)非常重要。金与铟发生反应,形成具有与纯铟不同的化学物理参数的金属间合金。根据透射电子显微镜图像分析了金属间合金的几何和结构参数。使用透射电子显微镜和能量色散谱法确定所研究样品中元素的分布。未退火(A)和退火(B)铟柱中的金属间合金厚度分别为 1.02 μm 和 1.67 μm。两个样品均观察到合金的层状和柱状内部结构,样品 B 中的晶粒大两倍。检测到未退火 In 柱的 Au-In 金属间合金的分级化学成分,而退火样品 B 的恒定成分为 40% Au 和 60% In。原子分布对 In 柱的机械稳定性影响较小。对于厚度为 1.67 μm 的均匀柱状金属间合金结构,直径为 25 µm、高度为 11 µm 的 In 柱的产率可能超过 99%。
摘要:在本文中,我们探讨了生成机器学习模型作为计算昂贵的Monte Carlo(MC)模拟的替代品的潜力,该模拟(MC)模拟了大型强子撞机(LHC)实验通常使用的。我们的目标是开发一个能够有效地模拟特定粒子可观察物的检测器响应的生成模型,重点关注同一事件中不同颗粒的检测器响应之间的相关性并适应不对称的检测器响应。我们基于掩盖自回归流链的条件归一化流量模型(CNF),有效地结合了条件变量和高维密度分布。我们使用在LHC上对偶发事件的Higgs玻色子腐烂样品进行了模拟样本评估CNF模型的性能。我们使用涂抹技术创建重建级别的可观察力。我们表明,有条件地归一化的流可以准确地对复杂的检测器响应及其相关性进行建模。此方法可以潜在地减少与生成大量模拟事件相关的计算负担,同时确保生成的事件满足数据分析的要求。我们在https://github.com/allixu/normalizing_flow_flow_for_detector_response
红外 (IR) 探测技术的发展主要依赖于 InAs/GaSb SL 外延 [1] 和生长后处理 [2] 的改进。为了实现最佳性能,必须优化器件架构 [3] 以及台面结构,使其侧壁垂直且光滑,以防止像素间距较小的焦平面阵列 (FPA) 中的串扰,其中周长与表面积的纵横比很高 [2, 4]。表面台面的粗糙度、反应产物的存在以及电活性缺陷的表面密度(包括断裂的化学键)都会影响表面漏电流的大小 [5]。台面型结构可以通过湿法或干法蚀刻来创建。先前的研究表明,无机和有机酸性蚀刻剂都适用于 InAs/GaSb 超晶格 (SL) 的湿法蚀刻 [5, 6]。湿法蚀刻有许多优点,例如断裂的化学键数量少、自由载流子密度降低,因此漏电流低 [6, 7]。然而,也会产生不良反应产物并残留在侧壁表面上,导致漏电流的显著增加。湿法蚀刻也是各向异性的,导致台面侧壁几何形状不理想 [8]。另一方面,InAs 和 GaSb 材料的干法蚀刻经常使用气态氯与惰性气体(如氩气)的组合 [9, 10]。气态氯因其高挥发性和高蚀刻速率而受到青睐,而氩离子通过轰击蚀刻表面简化了反应产物的解吸。BCl 3 蚀刻具有较低的蚀刻速率,但使用它会产生更光滑的台面侧壁 [11]。BCl 3 /Ar 等离子体的使用已被证明在分立探测器中是有效的。尽管如此,当用于台面时,它表现出次优性能
X射线源在强度和时间域都继续前进,从而开放了分析物质结构和特性的新方法,前提是可以有效地记录所得的X射线图像。从这个角度来看,我们关注像素区域X射线检测器的特定局限性。尽管像素区域X射线检测器也在近年来进步,但许多实验仍然受到限制。特别是,需要以GHz速率获取连续图像的检测器;在同一图像中以数百kHz的帧速率在同一图像中可以准确测量单个光子和数百万光子的检测器;并有效地捕获了非常硬X射线的图像(20 keV至数百keV)。最新检测的数据量和数据速率超过了大多数实用的数据存储选项和读取带宽,因此需要在线处理数据或代替全帧全帧读数。
常规的超导电子[1]依赖于超导电线和不同类型的弱环节的超电流和准粒子电流转移的相结合。这些组合可以实现各种功能性IES,例如磁力测定法[2],电流或电压放大器[3],电压标准标准[4],以及基于电阻[5]的检测器或依赖于系统的非平衡状态的电感[6]。与他们的半导体库型相比,超导电子设备缺乏基本元素:非二极管设备,例如二极管或热电元素。不存在非股骨能力可以归因于超导状态的内在电子 - 孔对称性。然而,这种对称性可以使用磁和超导元件的组合[7,8],从原则上讲,它可以实现强大的非重生或功绩的热电图。这些现象可用于创建超导旋转隧道二极管[9],用于超导逻辑和低温记忆的构件,或诸如超导向器 - forromagnet热磁性检测器(Suptrops-Inctife in Astrackect in Astrocke in Astrops-Ickmicys)的新颖类型的检测类型,例如超过forromagnet theroeecnet theroelec-teric tric检测器[10] ],例如,在安全成像中使用了Terahertz-radadiation感测[12]。非常明显,在SFTED中,吸收的辐射直接生成所需的测量信号,而无需单独的偏置电流或电压。
X射线首先是由W. Roentgen博士在德国于1895年发现的,目前已在包括物理,工业和医学诊断在内的广泛领域中使用。X射线应用的检测器范围跨越了一个广泛的范围,包括A-SI检测器,单晶检测器和复合探测器。有很多类型的检测器,特别是由SI单晶制成的。应用包括牙科X射线成像和医疗设备领域中的X射线CT(计算机断层扫描),以及对行李,食品和工业产品的无损检查;物理实验;等等。在低能X射线区域中称为软X射线区域,从几百eV到约20 keV,使用了直接检测器,例如Si Pin Photodiodes,Si APD和CCD区域图像传感器。这些检测器提供了高检测效率和高能量分辨率,因此用于X射线分析,X射线天文观察,物理实验等。由于物体的渗透效率很高,因此在工业和医疗设备中使用了高于软X射线的硬X射线区域。闪烁体检测器在这些应用中广泛使用。这些检测器使用闪烁体将X射线转换为可见光,并检测到可见光以间接检测X射线。尤其是在医学领域,使用具有较大光敏区域的X射线检测器的数字X射线方法已成为主流,取代了传统的基于胶片的方法。对于X射线探测器,Hamamatsu提供SI光电二极管,SI APD,CCD区域图像传感器和CMOS区域图像传感器,平板传感器等。在非破坏性检查中,双能量成像允许通过同时检测高能量和低能X射线来捕获深色调的图像。
与许多候选光感应材料相比,INSB在III-V家族的胶体量子点(CQD)半导体中有望进入更广泛的红外波长。但是,实现必要的尺寸,尺寸差异和光学特性一直具有挑战性。在这里研究了与INSB CQD相关的合成挑战,发现不受控制的锑前体的减少会阻碍CQD的受控生长。为了克服这一点,开发了一种将非流传性前体与锌卤化物添加剂相结合的合成策略。实验和计算研究表明,锌卤化物添加剂减速了锑前体的还原,从而促进了更均匀尺寸的CQD的生长。还发现,卤化物的选择提供了对这种效果强度的额外控制。所得的CQD在光谱范围为1.26–0.98 eV的光谱范围内表现出良好的激发型转变,以及强发光。通过实施结合后配体交换,可以实现胶体稳定的墨水,从而实现了能够制造高质量CQD纤维的胶水。在1200 nm处提出了INSB CQD光电遗传学的第一个演示,在1200 nm处达到75%的外部量子效率(QE),这是最高的短波红外线(SWIR)QE在重型无金属质红外CQD基于CQD基于CQD的基于CQD的设备中所报道的。
在 III-V 族胶体量子点 (CQD) 半导体中,与许多光敏材料候选物相比,InSb 有望获得更广泛的红外波长范围。然而,实现必要的尺寸、尺寸分散性和光学特性一直具有挑战性。本文研究了与 InSb CQD 相关的合成挑战,发现锑前体的不受控制的还原会阻碍 CQD 的控制生长。为了克服这个问题,开发了一种将非自燃前体与卤化锌添加剂相结合的合成策略。实验和计算研究表明,卤化锌添加剂会减缓锑前体的还原,从而促进尺寸更均匀的 CQD 的生长。还发现卤化物的选择可以额外控制这种效应的强度。所得 CQD 在 1.26-0.98 eV 的光谱范围内表现出明确的激子跃迁,同时具有强光致发光。通过实施合成后配体交换,实现了胶体稳定油墨,从而能够制造高质量的 CQD 薄膜。首次演示了 InSb CQD 光电探测器,在 1200 nm 处达到 75% 的外部量子效率 (QE),据了解,这是无重金属红外 CQD 设备中报告的最高短波红外 (SWIR) QE。
1 山西大学光电研究所量子光学与量子光学器件国家重点实验室,太原 030006,中国 2 山西大学极端光学协同创新中心,太原 030006,中国 3 合肥国家实验室,合肥 230088,中国 4 中国信息通信科技集团公司光通信技术与网络国家重点实验室,武汉 430074,中国 5 国家信息光电子创新中心,武汉 430074,中国 6 浙江大学 - 杭州全球科技创新中心,杭州 311215,中国 ∗ 通讯作者。