高频信号传输,低介电常数(D K)和低介电损耗因子(D F)的替代品以取代传统的二氧化硅材料。4 - 6聚酰亚胺(PI)通常被评为合适的候选者,因为其低分子极化性以及出色的热,机械和化学耐药性特征,并且在电信和微电子工业中表现出了理想的前景。7当前,低二型聚合物材料的结构和组成设计主要集中于结构修饰,改进材料制造过程和复合修饰。常规PI的固有介电常数位于约3.5中,但是,通常需要较低的值以最大程度地减少超大尺度集成电路,高频通信天线基板和毫米波雷达的层间介电信号传输的功率耗散和延迟。8 - 11通过减少主链上酰亚胺基团之间的极化,已经研究了许多方法来减少介电常数和PI的介电损失。12 PI聚合物的分子结构在其介电特性中起主要作用。固有偶极矩和
《纳米材料和生物结构文摘》第 17 卷,第 4 期,2022 年 10 月 -12 月,第 134 页。 1431-1440 增强 BaZr 1-x Ti x O 3 无铅陶瓷的介电和储能性能 A. Ahmad a 、S. Uddin b,c 、MF Nasir a 、G. Dad c 、A. Zaman a,* 、V. Tirth d,ea 物理系,里法国际大学,伊斯兰堡 44000,巴基斯坦 b 物理系,政府学院海亚塔巴德,白沙瓦 25000,巴基斯坦 c 物理系,库尔塔巴科学与信息技术大学,白沙瓦 25000,巴基斯坦 d 机械工程系,工程学院,哈立德国王大学,阿卜哈 61421,阿西尔,沙特阿拉伯王国 e 先进材料科学研究中心(RCAMS),哈立德国王大学古拉格,阿卜哈 61413,阿西尔,邮政信箱号 9004,沙特阿拉伯王国 铁电 BaZr 1-x Ti x O 3 (0 ≤ x ≤ 8) 陶瓷组合物采用固相反应法合成。该材料在空气中以 1250 °C 煅烧。在这项工作中,我们研究了室温下 BaZr 1-x Ti x O 3 的铁电、储能和微波介电性能。XRD 谱表明 BaZr 1-x Ti x O 3 组合物具有钙钛矿结构,空间群为 Pm-3m。SEM 形貌表明晶界数量的增加导致极化增加。通过改变电场(范围)和陶瓷材料的成分,从 (PE) 环路计算出储能性能。已经观察到相对介电常数随温度的增加而增加。据报道,存储能量密度 (W rec ) 为 0.043 J/cm 3 ,而效率 (ɳ) 在室温下为 57%,在含量 (x=0.06) 下为 40 kv/cm。钛酸钡锆 (BZT) 将成为储能装置的绝佳候选材料。 (2022 年 9 月 15 日收到;2022 年 12 月 9 日接受) 关键词:BaZr 1-x Ti x O 3 钙钛矿、固态路线、铁电、储能、无铅 1. 简介如今,任何人都面临着任何类型能源的危机,他们对能源资源的需求日益增加。在未来三十年,这些需求在世界范围内应该翻一番 [1]。由于大量使用,自然资源煤炭、石油和天然气将几乎耗尽。这还会造成污染、温室效应、气溶胶、酸雨和全球变暖 [2, 3]?需要寻找可再生能源,并储存这些可再生能源,这是一个问题[4]这些可再生能源本质上都是电能,因此需要储存它[5]在过去的几十年里,双极电容器以及高能量存储密度是目前可用的储能设备中最好的选择,即电池、双极电容器、燃料电池和超级电容器[6-8]。电介质具有高能量存储(ES)材料,因为它们具有相对较大的可释放能量密度(W rec)、高效率(η),以及适当的电场击穿强度(BDS)[9]。介电电容器的能量密度可以通过方程曲线下的面积计算,Wrec = ∫ 𝑃𝑃𝑃𝑃𝑃𝑃 𝑝𝑝 𝑟𝑟 𝑝𝑝 𝑖𝑖 (1)
是由Xrd确定的,标称组成BI 2 Cr 1 /6 Mn 1/6 Fe 1/6 CO 1/6 ni 1/6 ni 1/6 Cu 1/6 cu 1/6 ta 2 o 9+δ,不管合成条件如何,包含均量含量的均量含量的异位甲酸盐溶剂甲酸甲酸酯抗溶剂。在Bi 2-cr 1 /6 Mn 1/6 1/6 Fe 1/6 CO 1 /6 Ni 1/6 Cu 1/6 Cu 1/6 Ta 2 O 9+Δbismuth sublattice中获得了bimuth原子的缺乏。复杂的氧化物在pyrochlore结构类型中结晶(sp。gr。fd -3 m,。= 10.4811(2)Å)。陶瓷的特征是多孔,松散的微观结构,平均晶粒尺寸为0.5 –1μm。根据XPS数据,Pyrochlore中的过渡元件离子主要在Cr(III),Fe(III),MN(II),CO(II),CO(II),Ni(ii),Cu(ii),Cu(ii)状态中。在室温下,BI 2-1 / 3 Cr 1/6 Mn 1/6 Fe 1/6 CO 1/6 CO 1/6 Ni 1/6 Cu 1/6 Ta 2 O 9+δ的介电常数和介电损耗分别为1 MHz,分别为≈46和≈0.004。提出了一个等效电路,该电路模拟样品的电性能。
新沉积的介电材料的质量控制是 nanoTDDB 使用的另一个例子。具体来说,当使用原子层沉积 (ALD) 制备薄氧化膜时,需要对该过程进行微调以产生可重复的结果。这里用 ALD 制备二氧化硅膜,并用椭圆偏振法测量其厚度。由于在晶圆的不同位置观察到一些膜厚度变化,因此使用 Jupiter XR AFM 进行 nanoTDDB 测量以测量膜的电性能。使用 AFM 软件中编程的自动程序在晶圆的各个位置进行测量。
首次采用摘要的Rheo-二聚光谱法研究了外部剪切对模型单羟基醇的debye样松弛的影响,即2-乙基1-己醇(2E1H)。剪切变形导致结构弛豫,Debye松弛和2e1H的末端弛豫的强大加速度。此外,剪切诱导的结构弛豫时间的减少,与debye时间,𝜏 𝜏 𝜏和末端流动时间𝜏 𝜏 𝜏 𝜏 𝜏 𝜏 𝜏 𝜏 𝜏𝜏 𝜏 𝜏 𝜏ఈ𝜏 𝜏ఈ𝜏ఈ𝜏ఈఈ𝜏ఈఈ进一步的分析表明,2E1H的𝜏 /𝜏 𝜏 followଶ /𝜏 𝜏 Arrhenius温度依赖性非常适用于许多其他具有不同分子尺寸,建筑和酒精类型的单羟基醇。这些结果无法通过盛行的瞬态链模型来理解,并提出H键的断裂促进了促进的亚甲板分子的重新定位,这是单羟基醇的Debye松弛的起源,类似于分子机制,用于终末放松未渗透的“生物” Polymers。
以下出版物Zou,K.,Dan,Y.,Xu,H.,Zhang,Q.,Lu,Y.,Huang,H。,&He,Y。(2019)。无铅介电材料的最新进展用于储能。材料研究公告,113,190-201可从https://doi.org/10.1016/j.materresbull.2019.02.002获得。
这些行为并非直接源自其组成材料,而是源自其亚波长结构[1,2],以及最近的主动控制[3]。在光学领域,超材料在电磁学和光子学中提供了突破性的应用[4-6],例如以亚波长分辨率聚焦和成像[7]和负折射[8],因此在过去的几十年里引起了人们的极大兴趣。这些亚波长结构能够直接调整光的性质,包括振幅、相位和偏振。由于其支持表面等离子体极化子的能力[9],银和金等贵金属一直是可见光超材料构造块的传统材料选择,而等离子体太赫兹 (THz) 纳米天线通常基于重掺杂的半导体。 [10] 然而,这些超材料通常依赖于其组成块的谐振行为,并且在光频率下存在高电阻损耗,这限制了此类超材料和相关设备的功能在尖锐的频带范围内。更一般地说,基于谐振行为的超材料仅在
对于小型汽车雷达来说,微型的平面天线,任何雷达系统的头发和眼睛都知道自50年代以来的巨大进展。微带天线阵列被最大的汽车制造商用于雷达[5] - [7],因为重量轻,并且成本低成本制造以用于大量产量,但是它们的主要弱点是由于焦耳效应和狭窄的带宽而导致的能量损失,这限制了在MM-Wave和超越MM Wave和超越斑点天线的使用。然而,在1983年著名的Long实验[9]之后,发现了微带天线的艰苦竞争者和雷达系统的出色候选[8],这是介电谐振器天线(DRA),其中金属散热器被介电材料代替。传统上,介电谐振器成功用于MM波谐振器和微波炉,但没有人想到使用它们来辐射电磁波。
对于高相干性固态量子计算平台来说,微波频率下低损耗的电介质是必不可少的。在这里,我们通过测量集成到超导电路中的由 NbSe 2 –hBN–NbSe 2 异质结构制成的平行板电容器 (PPC) 的品质因数,研究了六方氮化硼 (hBN) 薄膜在微波范围内的介电损耗。在低温单光子范围内,提取的 hBN 微波损耗角正切最多在 10 −6 中间范围内。我们将 hBN PPC 与铝约瑟夫森结集成,以实现相干时间达到 25 μs 的传输量子比特,这与从谐振器测量推断出的 hBN 损耗角正切一致。与传统的全铝共面传输相比,hBN PPC 将量子比特特征尺寸缩小了约两个数量级。我们的研究结果表明,hBN 是一种很有前途的电介质,可用于构建高相干量子电路,它占用空间大大减少,能量参与度高,有助于减少不必要的量子比特串扰。广义的超导量子比特包括由电感和电容元件分流的约瑟夫森结,它们共同决定了它的能谱 1 。虽然理想情况下,组成超导量子比特的材料应该是无耗散的,但量子比特退相干的主要因素是量子比特的电磁场与有损体积和界面电介质的相互作用 2 。在典型的超导电路中,介电损耗可能发生在约瑟夫森结的隧穿势垒中,以及覆盖设备的许多金属和基底界面的原生氧化层中 3、4 。这些电介质通常是具有结构缺陷的非晶态氧化物,可以建模为杂散两能级系统 (TLS)。虽然这些 TLS 的微观性质仍有待完全了解,但已确定 TLS 集合与超导量子电路中的电磁场之间的相互作用限制了量子比特的相干性和超导谐振器的品质因数。人们还怀疑 TLS 可能存在于设备制造过程中留下的化学残留物的界面处 4、5。
摘要:二维过渡金属二甲藻元化半导体(2D TMD)的光电和转运性能非常容易受到外部扰动的影响,从而可以通过后体系修饰来精确地定制材料功能。在这里我们表明,纳米级不均匀性称为纳米泡得很不均匀,可用于菌株,而在双层二硫化物中,激发激子转运的介电调节(WSE 2)。我们使用超敏感的空间分辨的光学散射显微镜直接对激子的传输进行成像,这表明介电纳米泡在室温下在漏斗和捕获激子的效率上非常有效,即使明亮的激子的能量受到了忽略的影响。我们的观察结果表明,电介质不均匀性中的激子漏斗是由动量 - 间接(黑暗)激子驱动的,这些激动型(黑暗)激子的能量比明亮的激子对介电扰动更敏感。这些结果揭示了使用深色态能量景观的介电工程进行特殊空间和能量精确的2D半导体中控制激子传输的新途径。主要文本:二维过渡金属二甲藻元化半导体(2D TMD)是范德华的材料,由于其强烈的光 - 含量相互作用,即使在原子上薄的限制下,它们也对纳米级光电构成了巨大的希望。2D TMD的光电特性在很大程度上受其库仑结合的电子孔对(激子)的控制,其结合能相对较大,高达数百个Milli-Electronvolts(MEV),这是由于平面外介电介质筛选而导致的。1–6与自由电荷不同,激子是电荷中性的,因此很难用电子设备中的外部电场来操纵。7–9因此,激子的传输特性在很大程度上取决于随机的扩散运动,没有远程方向性,从而限制了它们作为信息和能量载体的使用。寻找在2D TMD中操纵激子传输的新方法,而不会根本改变其他材料特性,这将产生激子设备,这些设备结合了强烈的光结合,并精确地控制了原子上薄材料中能量和信息流的精确控制。控制2D TMD的特性的一种有吸引力的途径是利用其对菌株,10–21和环境筛查等外在因素的极端敏感性(图1A),5,22-26,实现对光电和运输特性的合成后调节。例如,拉伸应变减少了2D TMD的光学过渡能;因此,16,18,27,28个局部应变区域会产生能量梯度,可以在纳米级低能部位漏洞和捕获激子,该过程被利用以创建长寿命的量子发射器。14,29–33菌株工程很难控制宏观尺度,并且可能引入不良疾病。