基于机器学习的展开已实现了无链接和高维差异横截面测量值。该研究领域已经出现了两种主要方法。一个基于判别模型和基于生成模型的模型。歧视模型的主要优点是,他们学习对起始模拟的较小校正,而生成模型则可以更好地扩展到相位空间区域,而数据很少。我们建议使用Schrödinger桥和扩散模型来创建Sbunfold,这是一种结合了歧视性和生成模型的优势的展开方法。sbunfold的关键特征是,其生成模型将一组事件映射到另一组事件中,而无需经过已知的概率密度,就像使流量和标准扩散模型的正常情况一样。我们表明,与合成ZÞJETS数据集中的最新方法相比,Sbunfold取得了出色的性能。
Leibfried 等人,《自然》(2005 年) Gao 等人,《自然物理学》(2010 年) Fein 等人,《自然物理学》(2019 年)
许多量子计算和通信协议 ( 1, 2 ) 的一个关键要求是将特定的光量子态作为信息处理的资源。下面,我们将关注传播光束的量子态,它可以通过光子计数或零差检测来分析,零差检测测量信号态与具有相对相位 θ 的强参考光束之间的干涉。这可以测量一个称为电场“正交分量”的物理量,与算符 ˆ x θ = ˆ xcosθ + ˆ psinθ 相关,其中 ˆ x 和 ˆ p 是正则共轭场可观测量。算符 ˆ x 和 ˆ p 类似于粒子的位置和动量,它们通常被称为“量子连续变量”(QCV)。根据海森堡不等式,它们不能以无限的精度同时确定,所以一般不能为电场定义一个适当的相空间密度Π(x, p)。然而,可以定义一个准分布W(x, p),称为维格纳函数,其边际函数产生概率分布P(xθ)。通过测量几个θ值的分布P(xθ),可以重建维格纳函数;这个逆过程称为量子层析成像(3)。
d≥2的可能具有正(d -1)-hhusdor效法。 在[LM18,定理5.1]中也获得了一些(d -1 -δ)-hhusdor e含量的梯度的传播。 作为|∇u |的零在[NV17]中显示了有限的(d -2) - hausdor效法,在[LM18]中猜测是|∇u |的结果。应预期从任何δ> 0的正(d -2 +δ) - huusdor e含量中保留。 到现在为止,这个猜想仍然开放。 然后,本文的第一个目标是将Malinnikova的结果扩展到Schrödinger类型方程(1.1)。 在[LM18]相同的环境中,以完全的一般性获得了小型溶液的传播。 另一方面,仅在特定环境中得出了梯度小的传播。 的确,人们不能期望在完全普遍的情况下为(1.1)梯度传播小额的繁殖,因为如[hhohon99,备注p。 362],r d的每个闭合子集都可能是这种函数的关键集,因此也没有希望从一组(d -1 -1 -δ) - hausdor效应的集合中传播小的内容,即使对于小δ> 0。 尽管如此,我们的特殊结果对于我们接下来描述的光谱估算的应用程序很充分。可能具有正(d -1)-hhusdor效法。在[LM18,定理5.1]中也获得了一些(d -1 -δ)-hhusdor e含量的梯度的传播。作为|∇u |的零在[NV17]中显示了有限的(d -2) - hausdor效法,在[LM18]中猜测是|∇u |的结果。应预期从任何δ> 0的正(d -2 +δ) - huusdor e含量中保留。到现在为止,这个猜想仍然开放。然后,本文的第一个目标是将Malinnikova的结果扩展到Schrödinger类型方程(1.1)。在[LM18]相同的环境中,以完全的一般性获得了小型溶液的传播。另一方面,仅在特定环境中得出了梯度小的传播。的确,人们不能期望在完全普遍的情况下为(1.1)梯度传播小额的繁殖,因为如[hhohon99,备注p。 362],r d的每个闭合子集都可能是这种函数的关键集,因此也没有希望从一组(d -1 -1 -δ) - hausdor效应的集合中传播小的内容,即使对于小δ> 0。尽管如此,我们的特殊结果对于我们接下来描述的光谱估算的应用程序很充分。
我们提出了无模拟分数和流匹配([SF] 2 m),这是一种用于推断自随机动力学的无模拟Objective,给出了从任意源和目标分布中绘制的未配对样品。我们的方法一般 - 扩散模型训练中使用的得分匹配损失以及最近提出的流量匹配损耗用于训练连续归一化流量。[SF] 2 m将连续的随机构成建模为Schrödinger桥概率。它依赖于静态熵调查的最佳传输或Minibatch近似,以有效地学习SB,并使用模拟学习的随机过程。我们发现[SF] 2 m更有效,并且比先前的工作中基于仿真的方法为SB问题提供了更准确的解决方案。最后,我们将[SF] 2 m应用于快照数据学习细胞动力学的问题。值得注意的是,[SF] 2 m是在高维度中准确模拟细胞dynamics的第一种方法,并且可以从模拟数据中恢复已知的基因调节网络。我们的代码可在https://github.com/ atong01/conditional-flow-matching的TorchCFM软件包中找到。
Karen Akinsanya,R&D博士学位,Schrödinger博士主席迅速设计了遵守一系列项目标准的有效分子,这是一个多参数优化(MPO)问题,当程序限于相对有限的分子想法数量相对有限的分子想法与近乎含量的化学型化学型化学物质型,这是一个具有挑战性的问题。在基于原子物理学的计算方法(例如自由能计算,分子动力学和量子力学)的开发和基于云的部署方面取得了进步,以准确预测从效力到溶解度的各种化合物的多种化合物对生物制药行业中药物发现的影响越来越大。将这些方法与更广泛的实验和预测蛋白质结构结合起来,使探索并准确介绍了硅中的药物样化学空间的能力,以实现更广泛的分子靶标。我们描述了从我们的几个肿瘤学计划中利用基于前瞻性物理学的计算模型,以进行连续的化学空间探索,过滤和化合物优化,以产生三种临床阶段化合物。我们的MALT1抑制剂SGR-1505显示了激活的B细胞(ABC)亚型的MALT1酶活性和抗增殖活性的有效抑制作用。与批准的药物结合使用,SGR-1505与Bruton的酪氨酸激酶(BTK)抑制剂(例如ABC-DLBCL细胞系中的Ibrutinib)表现出强大的组合潜力。SGR-1505最近在人类临床试验中进行了表征。我们的可摩尔CDC7抑制剂SGR-2921具有很高的选择性,并在正常成纤维细胞中诱导凋亡,并且不显示肿瘤的协同作用和对多种批准的癌症疗法的协同作用和均质化,该癌症调节了凋亡,DNA修复机制,包括Venetoclax and Olaparib and flt3 ind3 Indim。在我们的WEE1/MYT1抑制剂计划中,部署了自由能扰动(FEP)和蛋白质FEP,以识别与现有WEE1临床化合物相比,具有优势的纳摩尔WEE1/MYT1共同抑制剂,这些抑制剂表现出优异的激酶选择性,与宽阔的Kinase Clinical Clinical Clinical Clinical Clianable Clianable Clianable Clienabe and-kinase Clane 450 kinmax and> 450 kinmax and> 450 kinmax and scanmax and scanmax(scanmax)相比临床前物种中的TDI特性和PK谱。在肺和卵巢异种移植模型中,我们的临床阶段WEE1/MYT1抑制剂SGR-3515证明了剂量依赖性靶靶标,肿瘤生长抑制和高剂量的肿瘤退化,并改善了间歇性剂量后的治疗指数。 除了我们的WEE1/MYT1程序中的合成致死性患者分割机会外,我们还在PRMT5-MTA程序中追求合成的致命配对,在那里我们利用了高分辨率蛋白质结构来设计独特的分子。 这些肿瘤学计划为未来的组合方案与各种固体和血液学癌症中的既定代理提供了潜在的机会。在肺和卵巢异种移植模型中,我们的临床阶段WEE1/MYT1抑制剂SGR-3515证明了剂量依赖性靶靶标,肿瘤生长抑制和高剂量的肿瘤退化,并改善了间歇性剂量后的治疗指数。除了我们的WEE1/MYT1程序中的合成致死性患者分割机会外,我们还在PRMT5-MTA程序中追求合成的致命配对,在那里我们利用了高分辨率蛋白质结构来设计独特的分子。这些肿瘤学计划为未来的组合方案与各种固体和血液学癌症中的既定代理提供了潜在的机会。
量子计算机对密码学构成了迫在眉睫的威胁。巧合的是,量子计算机增强的计算能力可以解决当今使用的大部分公钥密码学所依赖的精确数学问题,比如因式分解和离散对数 [Sho94]。好消息是,“量子安全”的数学工具(如格、多元方程或同源)已经存在,可以在许多环境中用作直接替代品。尽管如此,仍存在许多挑战。例如,使用量子安全的直接替代品并不总能保证整个协议的安全性,因为许多经典证明技术无法延续到量子环境中 [VDG98、ARU14、BDF + 11]。量子攻击者也可能获得对诚实方的“叠加访问权限”,从而开辟新的攻击途径 [KM10、Zha12a、DFNS14、KLLN16]。在这项工作中,我们考虑了来自量子计算机的完全不同的威胁,据我们所知,这种威胁以前从未被发现:量子盗版!
摘要:本文通过计算位置熵和动量熵,研究了分数阶薛定谔方程(分数阶导数(0 < n ≤ 2))中两个双曲单阱势的 Shannon 信息熵。我们发现,随着分数阶导数 n 的减小,波函数会向原点移动;在分数阶体系中,即当 n 值较小时,位置熵密度局域化程度越来越严重,而动量概率密度非局域化程度越来越高。然后,我们研究了 Beckner Bialynicki-Birula–Mycieslki(BBM)不等式,发现虽然该不等式随着双曲势 U 1 (或 U 2 )的深度 u 的增加而逐渐减小(或增大),但 Shannon 熵对于不同的深度 u 仍然满足该不等式。最后,我们还进行了 Fisher 熵的计算,发现 Fisher 熵随势阱深度 u 的增加而增大,分数阶导数n减小。
图 1:(a) 受限玻尔兹曼机 (RBM) 架构由一个可见输入层和一个二进制值隐藏层组成;对于给定的配置 (v, h),参数 (a, b, W) 用于定义能量函数 E 和相关的类玻尔兹曼概率密度 P。(b) 例如,RBM 可以在一组手写数字上进行训练,然后用于生成新的真实数字;为此,数字图像被展平为一维二进制向量 v(k),其中 1 和 0 分别对应数字和背景像素。(c) 配置相互作用 (CI) 方法将分子的波函数展开为激发斯莱特行列式的线性组合,可以表示为一种一维二进制图像。 (d) 本研究中提出的 CIgen 算法以迭代方式训练 RBM 在波函数当前近似中的行列式分布上,然后通过生成新的贡献来扩展它。
摘要:首次考虑具有恒定延迟的非线性Schrödinger方程。这些方程是具有立方非线性的经典schrödinger方程的概括,而更复杂的非线性schrödinger方程包含功能任意性。从物理的角度来看,考虑了数学物理学非线性方程延迟出现的可能原因。为了构建精确的解决方案,使用了相关方程解的结构类比。获得了具有延迟的非线性schrödinger方程的新精确解,这些方程在基本函数或四函数中表示。还发现了一些具有广义分离变量的更复杂的解决方案,这些解决方案是通过普通微分方程的混合系统描述的,而无需延迟或延迟的普通微分方程。这项工作的结果对于开发具有延迟的非线性schrödinger方程所描述的新数学模型可能很有用,并且给定的精确解决方案可以作为旨在评估数值方法准确性的测试问题的基础,以评估非线性偏差方程与延迟集成非线性偏差方程。