¹Univ. Grenoble Alpes,CNRS,Grenoble INP*,G2Elab,Grenoble,38031,法国 *francis.boakye-mensah@g2elab.grenoble-inp.fr 摘要 - 为了在气候变化法规日益严格的情况下找到 SF 6 的可行替代品,应该对压缩空气等替代品进行适当的评估。对于中压应用,耐受电压被用作尺寸标准,这取决于流光的引发和传播,而流光是电击穿的前兆。为了优化设计,应该通过预测模型从实验和数值上彻底研究在不同应力、压力等条件下此类放电的引发和传播机制。到目前为止,大多数数值研究都是通过自制代码完成的,因为由于此类计算的复杂性和非线性,商业软件中不易获得流光模型。最近,随着商业有限元软件COMSOL™Multiphysics 等离子体模块稳健性的增强,可以开发具有合理精度的流光放电模型。
[3] 基因编辑技术的出现提供了一种更精确的方法,可以在特定的基因组位置有针对性地插入或修改调控元件。成簇的规律间隔的短回文重复序列/CRISPR 相关蛋白 9(CRISPR/Cas9)彻底改变了基因编辑领域,为研究人员提供了精确基因改造的有力工具。关键的突破出现在 2012 年,当时 Emmanuelle Charpentier 和 Jennifer Doudna 证明 CRISPR/Cas9 系统可以被编程来切割特定的 DNA 序列,为其作为基因组编辑工具的应用奠定了基础 [4] ,这一发现后来获得了 2020 年的诺贝尔化学奖。事实证明,这项技术对于研究基因功能和改良作物性状非常有价值。虽然 CRISPR/Cas9 已广泛用于基因敲除,但它在通过同源定向修复(HDR)进行基因上调方面的应用仍在发展,尤其是在水稻中 [5] 。基于 HDR 的基因编辑需要同时将 CRISPR/Cas9 表达系统和 DNA 修复模板递送到细胞中。该过程可以通过
将胶体量子发射器确定性地整合到硅基光子器件中将推动量子光学和纳米光子学的重大进展。然而,将 10 纳米以下的粒子以纳米级精度精确定位到微米级光子结构上仍然是一项艰巨的挑战。在这里,我们引入了腔形调制折纸放置 (CSMOP),它利用 DNA 折纸的形状可编程性,选择性地将胶体纳米材料沉积在光刻定义的光刻胶腔内,这些光刻胶腔被图案化到任意光子器件上,具有高产量和方向控制。软硅化钝化可稳定沉积的折纸,同时保留其空间可编程的 DNA 杂交位点,从而实现等离子体金纳米棒 (AuNR) 和半导体量子棒 (QR) 的位点特异性附着。这分别提供了对光散射和发射偏振的控制,并在氮化硅波导、微环谐振器和靶心腔内确定性地集成了单个 QR。因此,CSMOP 为胶体纳米材料集成到光子电路中提供了一个通用平台,具有为量子信息科学和技术提供强大推动力的广阔潜力。
- 教育、环境和气候变化部长阁下。5. 一项法案,旨在重申与法定滋扰有关的法律并作出修正,改进处理这些滋扰的简易程序,控制船舶烟雾排放,规定废除对令人反感的行业或企业的现有控制,并用于相关目的。(B17/2024)
操纵基因活性和控制转基因表达的能力对于研究基因功能至关重要。虽然对于秀丽隐杆线虫来说,有几种用于修改基因或分别控制表达的遗传工具,但是没有遗传方法可以产生既能破坏基因功能又能为表达被破坏基因的细胞提供遗传途径的突变。为了实现这一点,我们开发了一种基于 cGAL(一种用于秀丽隐杆线虫的 GAL4-UAS 二分表达系统)的多功能基因陷阱策略。我们设计了一个 cGAL 基因陷阱盒并使用 CRISPR/Cas9 将其插入目标基因中,从而创建一个双顺反子操纵子,该操纵子可同时在表达目标基因的细胞中表达截短的内源蛋白和 cGAL 驱动基因。我们证明我们的 cGAL 基因陷阱策略可以稳健地产生功能丧失的等位基因。将 cGAL 基因陷阱系与不同的 UAS 效应菌株相结合,使我们能够挽救功能丧失的表型,观察基因表达模式,并在时空上操纵细胞活动。我们表明,通过显微注射或基因杂交的重组酶介导的盒式交换 (RMCE),可以进一步在体内设计 cGAL 基因陷阱系,以轻松地将 cGAL 与其他二分表达系统的驱动器(包括 QF/QF2、Tet-On/Tet-Off 和 LexA)交换,以生成在同一基因组位置具有不同驱动器的新基因陷阱系。这些驱动器可以与它们相应的效应物结合以进行正交转基因控制。因此,我们基于 cGAL 的基因陷阱是多功能的,代表了秀丽隐杆线虫基因功能分析的强大遗传工具,这最终将为基因组中的基因如何控制生物体的生物学提供新的见解。
一个著名的假设认为,通过用婴儿导向语音 (IDS) 而不是成人导向语音 (ADS) 与婴儿交谈,父母可以帮助他们学习语音类别。具体而言,据称 IDS 的两个特点有助于学习:过度发音,使类别更可分离,以及多变性,使泛化更具鲁棒性。在这里,我们测试了元音类别学习在日本成人用 ADS、IDS(针对 18-24 个月大的婴儿)或阅读语音 (RS) 发出的语音声学表示上的可分离性和鲁棒性。可分离性是通过计算日语的五个短元音类别之间的距离测量来确定的,而鲁棒性则通过测试六种不同的机器学习算法来评估,这些算法经过训练对元音进行分类,以泛化到 ADS 中新说话者所说的刺激。使用两种不同的语音表示,我们发现,在 RS 的情况下,高清晰度语音可以产生更好的可分离性,并且在 ADS 中,说话者之间的差异性增加可以为某些算法产生更稳健的类别。然而,这些结论并不适用于 IDS,事实证明,与 ADS 输入相比,IDS 既没有产生更可分离的类别,也没有产生更稳健的类别。我们讨论了在真实数据上运行的机器学习算法的实用性,以测试有关 IDS 功能作用的假设。
神经网络的集体行为取决于神经元的细胞和突触特性。相位响应曲线 (PRC) 是一种可通过实验获得的细胞特性测量方法,它量化了神经元的下一个尖峰时间的变化,该变化与刺激传递到该神经元的相位有关。神经元 PRC 可分为纯正值 (I 型) 或具有不同的正负区域 (II 型)。1 型 PRC 网络往往不会通过相互兴奋的突触连接进行同步。我们研究了相同的 I 型和 II 型神经元的同步特性,假设突触是单向的。通过对扩展的 Kuramoto 模型进行线性稳定性分析和数值模拟,我们表明前馈环路基序有利于 I 型兴奋和抑制神经元的同步,而反馈环路基序则破坏了它们的同步趋势。此外,大型有向网络(没有反馈基序或有许多反馈基序)已从相同的无向主干构建,并且对于具有 I 型神经元的有向无环图观察到高同步水平。结果表明,I 型神经元的同步性取决于网络连接的方向性和其无向主干的拓扑结构。前馈基序的丰富性增强了有向无环图的同步性。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2025 年 2 月 5 日发布。;https://doi.org/10.1101/2025.02.05.636566 doi:bioRxiv preprint
引言儿童营养不良是公共卫生重点问题,表现为体重和线性生长受损(消瘦和发育迟缓)、免疫和代谢功能障碍、中枢神经系统 (CNS) 发育改变以及其他生理异常。1营养不良通常通过人体测量评估进行分类。据估计,全球约有 5000 万名 5 岁以下儿童患有急性营养不良(消瘦);中度急性营养不良 (MAM) 的儿童的体重身长 Z 分数 (WLZ) 比参考多国儿童队列的平均值低 2 – 3 个标准差(WLZ -2 至 -3),而 WLZ < -3 则是非水肿性重度急性营养不良 (SAM) 的特征。 2 发育迟缓是儿童营养不良最常见的形式,影响约 1.5 亿儿童,其中近三分之一来自南亚和撒哈拉以南非洲的部分地区。3 发育迟缓通常始于胎儿时期,与母亲的风险因素(身高、年龄、教育程度)有关;出生后,在环境压力因素(如不良饮食、感染)的影响下,发育迟缓可能会持续恶化,至少持续到 2 岁,此后,许多低收入国家儿童的 LAZ 评分仍然很低
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2025 年 1 月 10 日发布。;https://doi.org/10.1101/2025.01.06.631520 doi:bioRxiv preprint