船入营地。仅限预订,最多可提前 24 小时预订(禁止临时入场)。夜间停泊区。仅限自备船只,禁止生火。禁止夜间停泊 无尾流区 船只限制区 项目总部 船只下水处
NASA的轨道碎片计划办公室(ODPO)维护了各种返回的航天器材料,能力和设施,用于原位和实验室测量,这些材料和实验室测量直接支持轨道碎片(OD)环境模型。原位测量值包括对暴露和返回的硬件表面的分析。这些表面是地面雷达和光学传感器敏感性下方的小型微度(MM)和OD(MMOD)通量的被动传感器。各种仪器和技术用于确定所选影响特征的大小和深度,如果可行的话,则使用弹丸材料的组成。对撞击子残基的分析可以使MM和OD在1 mm以下的MM和OD分化,以支持建模OD环境。此外,根据化学分析,可以在低,中,中,高密度撞击器中进一步区分被鉴定为OD的弹丸。除了现场测量外,ODPO还与美国太空太空系统司令部(以前是美国空军空间和导弹系统中心),航空航天公司和佛罗里达州的美国太空太空系统司令部合作,在2014年空军阿诺德工程工程开发复杂的基于实验室的超速影响测试,DEBRISAT。正在分析此影响测试系列的结果数据,以评估碎片的大小/质量,材料/密度,形状和其他感兴趣的参数。使用现代,低地球轨道航天器的模拟轨道破裂更新NASA的分手模型和尺寸估计模型所需的数据。最终,该冲击测试的200,000多个片段将存储在NASA Johnson航天中心,并由ODPO进一步分析。该项目还将使用机器学习技术来推断影响实验中使用的软泡沫中嵌入的片段的物理参数。应用于泡沫面板的X射线图像,这些技术有望最大程度地减少人类在循环过程中的碎片提取和物理表征。将介绍该项目和收集的数据的简要概述。
出版物: [1] N. Rodriguez-Alvarez 等人,“前馈神经网络去噪应用于 Goldstone 太阳系雷达图像”,遥感,2022 年 2 月 [2] CG Lee 等人,“地月空间碎片雷达的能力和可行性”,IEEE 航空航天 2023 [3] Y.-M. Yang 等人,“使用深空网络和开环跟踪测量实现地月目标检测”,IEEE 航空航天 2023 [4] CG Lee 等人,“带有 GSSR 的地基地月空间碎片雷达”,IGARSS 2023 - 2023 IEEE 国际地球科学与遥感研讨会,2023 年 [5] Y.-M. Yang 等人,“背景杂波对使用深空网络开环跟踪测量进行地月目标检测的影响”,IGARSS 2023 - 2023 IEEE 国际地球科学和遥感研讨会,2023 年 PI/任务经理。联系信息:Clement Lee 818-354-5587 clement.g.lee@jpl.nasa.gov
对于大多数儿童来说,发烧只会引起轻微不适,但有些儿童会引发癫痫。如果您的孩子在发烧时癫痫发作,则称为热性惊厥。这是儿童中常见的癫痫类型。这可能是疾病的第一个征兆,因为癫痫发作可能在孩子发烧或其他症状之前发生。患有热性惊厥的儿童可能不会每次生病时都癫痫发作。
摘要 简介:四价麻疹、腮腺炎、风疹和水痘 (MMRV) 疫苗的研究表明,与同一次就诊时接种的 MMR 和 V (MMR+V) 疫苗相比,接种第一剂后热性惊厥 (FC) 的相对风险增加两倍。涵盖的领域:这篇叙述性综述从临床角度介绍了第一剂 MMRV 疫苗后发生 FC 的情况,并概述了接种疫苗后减少 FC 发生的方法。专家意见:虽然在未感染麻疹的婴儿中,与接种 MMR+V 疫苗相比,接种第一剂 MMRV 后的相对 FC 风险增加,但与其他原因(如自然接触病原体或常规疫苗接种)引发的儿科人群总体 FC 风险相比,其归因风险较低。与单独接种 MMRV 相比,MMRV 与其他常规疫苗共同接种后并未报告 FC 风险增加。根据我们的研究结果,并考虑到 MMRV 疫苗接种的好处(更少的注射、更高的覆盖率、更好的疫苗接种依从性),MMRV 疫苗的整体效益风险状况被认为仍然是积极的。如果易感儿童(例如有 FC 个人/家族病史)接种 MMR+V 而不是 MMRV 作为第一剂,他们患 FC 的可能性可能会降低。在接种疫苗后的前 2 周内监测接种者是否发烧也很重要。
轨道碎片是指任何绕地球运行的人造太空物体,不再具有任何有用的用途 [1]。轨道碎片对所有太空任务都构成威胁,包括情报界 (IC) 的任务。低地球轨道 (LEO) 的平均撞击速度为 22,500 MPH,即使是最小的碎片也会造成严重损害,0.2 毫米的油漆碎片撞击 STS-71 时产生的直径为 3.8 毫米的坑洞就是明证 [2]。目前,有超过 1 亿个大于 1 毫米的物体绕地球运行,[3, 4] 但据估计,目前追踪到的可能造成任务终止损害的碎片不到 1% [5]。此外,由于近地空间环境的动态和多变性,预测碎片的轨迹极其困难,需要持续监测 [6]。虽然目前可以探测和追踪大于 10 厘米的碎片,但目前的能力不足以追踪较小的碎片 [7]。太小而无法追踪的碎片通常被称为“致命的不可追踪碎片”(LNT),[8] 会对航天器造成严重损害,甚至危及太空任务。探测、跟踪和表征 LNT 碎片将有助于全球宝贵太空资产的更安全运行 [9]。
1) 太空垃圾问题的背景:自太空时代开始以来,发射到太空的卫星和火箭数量不断增加,导致太空垃圾问题日益严重。地球轨道上现在布满了数千颗运行中的卫星,问题甚至延伸到了月球表面和小行星带。反卫星试验等事件加速了太空垃圾的扩散,这些事件导致现有卫星发生碰撞和碎裂,产生了更多的垃圾。太空垃圾的不断增长对太空任务提出了重大挑战。它存在与地球轨道上的贵重资产相撞的风险,每年需要进行多次防撞操作。
摘要:原则上,地面高功率激光器能够通过远程诱导激光烧蚀动量使任何类型的空间碎片物体脱离低地球轨道 (LEO)。然而,效率和操作安全性的评估取决于许多因素,例如大气限制或辐射过程中碎片解体的风险。我们分析了各种目标几何形状和尺寸的激光动量,并且首次在大规模模拟中将热约束纳入激光辐照配置中。使用相干耦合的 100 kJ 激光系统,波长为 1030 nm,脉冲持续时间为 5 ns,在优化的指向仰角范围内,脉冲频率应小于 10 Hz,以防止碎片熔化。对于机械完好无损的有效载荷或火箭体,重复率应该更低。尺寸在 10 到 40 厘米之间的小碎片可以通过大约 100 到 400 次正面照射来脱离轨道,而超过 2 米的物体通常需要超过 1000 次照射才能脱离轨道。因此,基于激光的碎片清除不能被视为处理最高风险大型碎片的主要太空可持续性措施,但它可以使用全球分布的激光站点的小型网络来修复大量小型碎片。
摘要:空间碎片去除(ADR)被太空机构定位为稳定空间碎片的指数生长非常重要的轨道任务。大多数已经开发的捕获系统都是为大型合作卫星设计的,这导致了昂贵的一对一解决方案。本文提出了一种多功能杂种机制,以针对低地球轨道(LEO)的各种小型不合作空间碎片,从而实现了一对一的一对一解决方案。该系统被定制为拟合到立方体。它结合了主动的(带有线性执行器和阻抗控制器)和被动(具有反击的关节)依从性,以消除影响能量,确保足够的接触时间,并成功地帮助捕获更广泛的空间碎片。进行了一项模拟研究,以评估和验证将混合依从性整合到ADR系统中的必要性。这项研究发现了碎屑质量,系统的刚度和接触时间之间的关系,并提供了调整阻抗控制器(IC)增益所需的数据。这项研究还证明了混合依从性的重要性,以确保对更广泛的空间碎片的安全可靠捕获。
对空间基础设施及其快速扩张的日益依赖性需要开发和增强空间碎片和破碎研究的工具。准确预测与卫星分裂相关的风险需要全面了解所涉及的动态。为了满足这一需求,本文中采用了广泛使用的NASA标准分手模型(SBM)来预测破裂事件引起的碎片特征。另外,还引入了一种新方法来确定这些片段的方向,这是SBM直接覆盖的。此外,动态气体理论的原理用于计算碎片和预定的卫星种群之间的总体长期碰撞风险。该结果揭示了SBM在准确模拟某些卫星类型的碎片中的局限性。然而,新实施的片段方向性方法与观察到的数据很好地保持一致,这表明其进行了进一步研究的潜力。同样,风险模型与ESA的主人表现出强烈的对应关系,ESA的主体是一种用于评估碎屑碰撞风险的模型,其偏差可能是由于所使用的影响速度模型不同所致。最后,合并了经过验证的碎片和风险模型,并使用合并模型来分析现实世界中的碎片事件。