成熟和新兴的基因编辑器 CRISPR–Cas 系统是一种广泛存在的原核生物防御系统,用于防御入侵的噬菌体和外来遗传物质。在自然界中,它们由 (1) 效应模块(在第 1 类 CRISPR 系统中是蛋白质复合物,在第 2 类 CRISPR 系统中是单个效应子)和 (2) 适应模块(将外来序列整合到 CRISPR 阵列中,crRNA 从中表达)组成。由于这些系统是 RNA 引导的,因此可以通过改变 crRNA 的序列重新定位它们,这为可编程基因组编辑工具提供了一个起点,有关此类工具的开发已在其他地方进行了综述 5 – 13 。第一个被设计用于人类细胞的系统是 2 类 CRISPR–Cas9 系统 14、15,其中化脓性链球菌 CRISPR–Cas9 系统 (SpCas9;也简称为 Cas9) 是目前使用最广泛的系统。Cas9 在与向导 RNA(对于 Cas9 来说称为单向导 RNA (sgRNA))互补的靶位点处产生双链断裂 (DSB);在人类细胞中,这些 DSB 可以通过非同源末端连接 (NHEJ) 修复,这一过程通常会导致基因功能丧失。早期临床数据 16 表明,NHEJ 介导的基因敲除会降低致病蛋白的表达(见相关链接)。靶向的 DSB 也可以通过宿主细胞的内源性同源修复机制进行修复,从而整合由 Cas9 和 gRNA 随附的外源提供的模板 DNA。 Cas9 已被改造以实现其他基因组结果。通过突变 SpCas9 的催化残基(参考文献 17),Cas9 可以转化为可编程的 DNA 结合蛋白,通常称为死 Cas9 (dCas9)。尽管单独使用 dCas9 可以通过阻止 RNA 聚合酶的通过来减少靶基因转录,但 dCas9 与转录抑制因子(例如 Krüppel 相关框结构域 18)或表观基因组修饰因子(例如 DNA 甲基化酶 DNMT3A 19、20)的融合已促成 CRISPR 干扰系统的产生。类似地,dCas9 可通过融合转录激活因子(如 VP64(参考文献 21))或表观基因组修饰因子(如人类乙酰转移酶 p300(参考文献 22)或 TET1 脱甲基酶 19、23)用于靶向转录激活。
Victor Hugo C. de Albuquerque博士(IEEE的高级成员)是Teleformatics Engineering(DETI)/研究生课程的教授兼高级研究员,远程信息技术工程(PPGETI)的研究生课程(UFC)(UFC)(UFC)。 他曾在Paraíba联邦大学(UFPB,2010年)获得机械工程博士学位,并获得了PPGETI/UFC(UFC,2007年)的Teleforformatics工程硕士学位。 他在联邦技术教育中心完成了机电一体化工程的BSE(Cefetce,2006年)。 他具有生物医学科学和工程的经验,主要在应用计算,智能系统以及可视化和互动的研究领域,对模式识别,人工智能,图像处理和分析以及在生物信号处理,生物医学电路,生物医学电路和人类/人类/人类/人类/人类的互动和诸如动物的模型和美德的兴趣,以及生物信号处理,生物医学电路和人类脑电图和美德。 Victor教授是巴西生物医学工程学会(SBEB)的正式成员。 He is Editor-in-Chief of the Journal of Artificial Intelligence and Systems and Journal of Biological Sciences , as well as Associate Editor of the IEEE Journal of Biomedical and Health Informatics , Computers in Biology and Medicine , Frontiers in Cardiovascular Medicine , Computational Physiology and Medicine , Applied Soft Computing , IEEE Access , Frontiers in Communications and Networks , Computational Intelligence and Neuroscience , Measurement , IET Quantum 沟通 。Victor Hugo C. de Albuquerque博士(IEEE的高级成员)是Teleformatics Engineering(DETI)/研究生课程的教授兼高级研究员,远程信息技术工程(PPGETI)的研究生课程(UFC)(UFC)(UFC)。他曾在Paraíba联邦大学(UFPB,2010年)获得机械工程博士学位,并获得了PPGETI/UFC(UFC,2007年)的Teleforformatics工程硕士学位。他在联邦技术教育中心完成了机电一体化工程的BSE(Cefetce,2006年)。他具有生物医学科学和工程的经验,主要在应用计算,智能系统以及可视化和互动的研究领域,对模式识别,人工智能,图像处理和分析以及在生物信号处理,生物医学电路,生物医学电路和人类/人类/人类/人类/人类的互动和诸如动物的模型和美德的兴趣,以及生物信号处理,生物医学电路和人类脑电图和美德。Victor教授是巴西生物医学工程学会(SBEB)的正式成员。He is Editor-in-Chief of the Journal of Artificial Intelligence and Systems and Journal of Biological Sciences , as well as Associate Editor of the IEEE Journal of Biomedical and Health Informatics , Computers in Biology and Medicine , Frontiers in Cardiovascular Medicine , Computational Physiology and Medicine , Applied Soft Computing , IEEE Access , Frontiers in Communications and Networks , Computational Intelligence and Neuroscience , Measurement , IET Quantum 沟通 。此外,他曾是几本著名的期刊和许多国际会议的TPC成员的首席嘉宾编辑。
将载脂蛋白 B mRNA 编辑酶、催化性多肽样胞苷脱氨酶与催化功能受损的 Cas 蛋白(例如 nCas9 或 dCas9)融合,提供了一种新型基因编辑技术,即碱基编辑,可高效地实现靶向碱基替换。然而,在碱基编辑中观察到全基因组和全转录组脱靶突变,这引发了对治疗应用的安全性担忧。之前,我们开发了一种新的碱基编辑系统,即 transformer 碱基编辑器 (tBE),可在哺乳动物细胞和小鼠中诱导高效编辑,且不会观察到全基因组或全转录组脱靶突变。这里我们描述了设计和应用 tBE 的详细方案。本方案包括设计单向导 RNA (sgRNA) 和辅助 sgRNA 对、构建构建体、确定全基因组和转录组范围的脱靶突变、生产含有 tBE 的腺相关病毒、将腺相关病毒递送到小鼠体内以及检查体内编辑效果的步骤。使用 sgRNA-辅助 sgRNA 对,tBE 的高精度碱基编辑可以在 2-3 周内(在哺乳动物细胞中)或 6-8 周内(在小鼠中)完成。整个过程可以由研究人员使用分子生物学、生物信息学和小鼠饲养的标准技术共同完成。
基于CRISPR的摘要定向进化是一种有效的繁殖生物技术,可改善植物中的农艺特征。然而,使用单个单个指南RNA,其基因多样化仍然受到限制。我们在这里描述了多重的正交基础编辑器(MOBE),以及随机多重的SGRNA组装策略,以最大程度地提高基因多样化。bobe可以在不同的目标上诱导有效的正交安倍(<36.6%),CBE(<36.0%)和A&CBE(<37.6%),而SGRNA组装策略随机基础编辑各个目标上的基础编辑事件。与稻米乙酰辅酶A羧化酶(OSACC)的第34外显子的每个链中的130和84个靶标相应,我们观察到了随机双重双重和随机三重SGRNA库中的目标 - 折叠组合。我们使用MOBE和大米中的随机双重SGRNA文库进一步进行了OSACC的定向演变,并获得了更强的除草剂耐药性的单个或连接的突变。这些策略对于功能基因的原位定向演变很有用,并且可能会加速大米的性状改善。
摘要 基于 CRISPR 的定向进化是一种有效的育种生物技术,可改善植物的农艺性状。然而,使用单个单向导 RNA 其基因多样化仍然有限。我们在这里描述了一种多重正交碱基编辑器 (MoBE) 和一种随机多重 sgRNA 组装策略,以最大化基因多样化。MoBE 可以在不同的靶标上有效诱导正交 ABE (< 36.6%)、CBE (< 36.0%) 和 A&CBE (< 37.6%),而 sgRNA 组装策略将各种靶标上的碱基编辑事件随机化。对于水稻乙酰辅酶 A 羧化酶 (OsACC) 第 34 外显子的每一条链上的 130 个和 84 个靶标,我们在随机双 sgRNA 和随机三重 sgRNA 文库中观察到多达 27 294 种靶标-支架组合类型。我们进一步利用MoBE和随机双sgRNA文库对水稻中的OsACC进行了定向进化,获得了更强的除草剂抗性的单突变或连锁突变。这些策略可用于功能基因的原位定向进化,并可能加速水稻性状改良。
在这项研究中,我们生成并比较了三个针对马铃薯(卵巢结核)制成的胞苷碱基编辑器(CBE),该量子量其最多赋予了原生质体池中所有等位基因的43%C-T转换。早些时候,基因编辑的马铃薯植物是通过聚乙烯二烯介导的CRISPR/CAS9转化原生质体的转化而成功产生的。在一项研究中,通过用内源性马铃薯ST U6启动子替换U6-1启动子的标准拟南芥,从而获得了3 - 4倍的编辑效率。在这里,我们使用了这种优化的构建体(SP Cas9/ st u6-1 :: grna1,Target GRNA序列GGTC 4 C 5 TTGGAGC 12 AAAAAC 17 TGG)用于生成CBES量身定制的马铃薯,并测试了用于C-T碱基编辑的CBES在Granule-Bounchase-bound starch synthase 1 Gene中的C-T碱基编辑。首先,将链球菌CAS9转化为(D10A)Nickase(NCAS9)。接下来,来自人hapobec3a(A3a),大鼠(EVO_RAPOBEC1)(RA1)或Sea Lamprey(EVO_ PM CDA1)(CDA1)的三种胞质脱氨酶之一(cda1)与NCAS9和A尿素 - DNA Glycosylase融合了C-Encas9(CDA1)与每种模块化的链接。CBE的总体高度有效,A3A具有最佳的总体基础编辑活动,平均为34.5%,34.5%和27%的C-T转换为C4,C5和C12,而CDA1的平均基础编辑活动的平均基础编辑活性为34.5%,34%,34.5%,14.25%C4和C4,C4和C4,C4和C4,C4和C4,C4。ra1在C4和C5时表现出平均基础编辑活性为18.75%,19%的基础编辑活动,是唯一在C12时显示C-TO-T转换的基本编辑器。
摘要 自从首次报道将 CRISPR/Cas9 系统用于基因组工程以来,过去十年我们有效地操纵哺乳动物基因组的能力得到了显著提高。然而,未来仍存在重大挑战,阻碍了基于 CRISPR 的基因编辑技术转化为安全有效的治疗方法。由于 PAM 限制,CRISPR 系统的目标范围通常有限,脱靶活性也对治疗应用构成严重风险。此外,第一代基因组编辑器通常通过在目标位点诱导双链断裂 (DSB) 来实现所需的基因组修饰。尽管效率很高,但由于与核酸酶诱导的 DSB 相关的缺点,这种“切割和修复”策略在临床环境中不太受欢迎。在这篇综述中,我们重点介绍了有助于应对这些挑战的最新进展,包括设计和发现具有改进功能的新型 CRISPR/Cas 系统以及开发无 DSB 的基因组编辑器。
摘要这项研究调查了动机作为编辑前对尼日利亚东北联邦大学图书馆图书馆的研究生产力的影响。为研究采用了定量方法和调查设计。这项研究的人口由尼日利亚东北部七(7)个联邦大学图书馆的366名图书馆员组成,从中列出了该研究。使用百分比,平均值和标准偏差分析收集的数据。结果表明,动机对尼日利亚东北部联邦大学图书馆图书馆的研究生产力产生了重大影响。该研究的结果表明,外在动机对研究生产力没有重大影响,而内在动机被发现对研究生产率产生了重大影响。这项研究推荐了东北部的图书馆员联邦大学图书馆,应用书籍,期刊文章和会议论文进行共同撰写的作品,以提高其研究生产力;东北联邦大学图书馆的管理人员应通过迅速支付学术津贴和良好的薪水计划来激励图书馆员,以提高其研究生产力。关键词:动机,研究生产力,图书馆员,联邦大学图书馆,东北简介
在本文最初在线发表的版本中,图 2e 中位点 18 的编辑碱基被标记为 A6 和 A8;它们分别是 A9 和 A11。在补充图 6 中,位点 18 的 x 轴标签从左到右依次为 A2、A3、A4、A6、A8、A16、A17、A19 和 A20;正确的标签为 A5、A6、A7、A9、A11、A19、A20、A22 和 A23。这些错误已在本文的印刷版、PDF 版和 HTML 版中得到更正。
由于发现了 CRISPR-Cas 系统的蛋白质抑制剂(称为抗 CRISPR (Acrs)),精确且可控的 CRISPR-Cas 工具的开发成为可能。Acr 蛋白能够控制脱靶突变并阻碍 Cas 蛋白的编辑操作。Acr 有助于选择性育种,从而帮助植物和动物改善其宝贵特性。在这篇综述中,讨论了几种 Acrs 所采用的基于 Acr 蛋白的抑制机制,例如 (a) 中断 CRISPR-Cas 复合物组装、(b) 干扰靶 DNA 结合、(c) 阻断靶 DNA/RNA 裂解和 (d) 酶促修饰或降解信号分子。此外,这篇综述强调了 Acr 蛋白在植物研究中的应用。