使用FT-IR和1 HNMR合成并表征了基于Di-Imine化合物的不同疏水链长度的三种双子双子表面活性剂(GI-S-表面活性剂)(GI-S-表面活性剂),缩写为GI-6,GI-12和GI-14。讨论了在酸性介质中计算出的表面活性参数。通过体重减轻和1M HCL的电化学技术评估了胃肠道表面活性剂对X65钢腐蚀的抑制作用,并伴随着表面分析和理论研究。在加入1x10 -3 m的GI-14后,X65钢的电阻增强到近⁓764OHm.cm 2。通过遵循Langmuir等温线的吸附现象,这推断了X65钢表面上的保护膜形成。由于电子富含电子中心在其化学结构中的存在,gi-表面活性剂的抑制效率在室温下超过95%,在328 K下的抑制效率超过93%。根据DFT和MCS方法研究了制备的GI表面活性剂分子结构与其腐蚀抑制性能之间的关系。SEM和EDX证实了GI表面活性剂的保障效应。GI表面活性剂的性能与先前报道的化合物之间的比较研究证实了它们作为腐蚀抑制剂的高潜在应用。关键字:x65-steel;腐蚀;双子表面活性剂; CMC; EIS; DFT。
摘要通过一种简单的一步水热法获得了一种高度机智,环境和可回收的磁性蒙脱石复合材料(MMT/CF),并表现出极好的PB(II)去除。随后,AS合成的吸附剂的特征是XRD,SEM-EDX,FTIR,BET和TGA-DTA。研究了工作参数,包括吸附剂剂量,初始PB(II)浓度,溶液pH和时间。另外,在MMT/CF中,在响应表面方法(RSM)和人工神经网络(ANN)之间形成了比较方法,以优化和建模PB(II)的去除效率。结果表明,考虑到其更高的相关系数(R 2 = 0.998)和较低的预测误差(RMSE = 0.851并添加= 0.505),ANN模型比RSM更精确且非常受信任的优化工具。langmuir等温线,提供了对实验数据的最佳拟合度,最大吸附能力为101.01 mg/g。此外,动力学研究表明,伪二阶模型与实验数据非常适合。磁MMT/CF复合材料具有高吸附能力,适合重复使用。因此,这项研究表明,MMT/CF复合材料可能是Pb(II)从水性培养基吸收中的潜在吸附剂。
摘要:在本研究中,使用eclipta alba的水叶提取物成功地生物合成了铜掺杂的氧化钴(Cuco 2 O 4)纳米颗粒,并使用各种技术进行了表征,并使用诸如UV-Vis-compophopophotementry,例如uv-vistrophotophotigry,例如紫外线分光镜,傅立叶转化的红外线图(ftir)和扫描(ftir)secormody(ftir)(ftir)(ftir)(ftir)(ftir)。 X射线(EDX)和X射线衍射(XRD)。光谱法证实了Cuco 2 O 4纳米颗粒的形成和微观技术证实了纳米颗粒的形态。通过圆盘扩散法测量合成纳米颗粒的抗菌特性。光吸收光谱显示了纳米颗粒的光学特性。使用超声速度,密度和粘度分析了纳米流体中分子相互作用的行为。计算了热力学参数,例如绝热可压缩性,自由长度和声学阻抗。索引术语 - Eclipta Alba,抗菌活性,分子相互作用,热力学参数,超声技术I.引言近年来,在医学,农业和太阳能细胞场中发挥了重要作用,已经解决了绿色纳米颗粒的使用。因此,使用生物系统制造纳米颗粒的新合成方法可以铺平基于生物医学和纳米技术的行业的有希望的途径[1-4]。出现了不同的低成本和低环境影响方法,以替代传统合成过程。最考虑的技术之一是使用生物体合成纳米颗粒。在所有生物体中,植物似乎是最好的候选者,它们适合于纳米颗粒的提高生物生产[5]。纳米颗粒由提取物合成的纳米颗粒更稳定,生产率比微生物的速度快。此外,药用植物的提取物通常被用作金属纳米颗粒生产中的稳定和还原材料[6]。金属纳米颗粒在微电子,传感器,催化和纳米技术的各个领域中找到应用。这些颗粒由于其尺寸较小,表面积,化学和光学特性以及良好的电导率而具有优势。其中,铜掺杂的氧化钴纳米颗粒(Cuco 2 O 4)在研究领域中引起了极大的兴趣,例如太阳能电池,生物柴油,光催化,去除水污染物,超级电容器,超级电容器,电催化剂等,由于其理想的特性,例如低成本,nontoxicity,nottoxicity and Notontoxitiation,nottoxicity&Nontontoxicity&Nottoxitiation and Nottoxitiation and Nottoxitiation [7]。以合成铜掺杂的氧化钴纳米颗粒的目的,使用植物Eclipta alba的水叶提取物采用了完整的绿色方法,作为有效的稳定和螯合剂。既没有使用有机/无机溶剂,也没有使用任何表面活性剂,这一事实使该过程作为环保和绿色。药用植物的界面和纳米颗粒的生物合成为广泛的生物医学应用提供了令人兴奋的机会[8]。在本研究中,我们报告了使用eclipta alba叶提取物合成铜掺杂的氧化钴纳米颗粒,并使用XRD,UV,FTIR,SEM,EDX和抗细菌研究进行了表征。在各种温度下,使用超声技术解释了制备的纳米流体的热力学特性。
摘要 本研究考察了水热法制备的氧化铜还原氧化石墨烯纳米复合材料 (CuO/rGO) 的物理化学性质和耐腐蚀性。CuO/rGO 纳米复合材料具有明确而均匀的结构、减小的晶体尺寸和均匀分布的与 rGO 连接的 CuO 纳米粒子。X 射线衍射证实了 15.1 nm 结晶单斜 CuO 纳米粒子的制造。EDX 通过检测 Cu、O 和 C 成分来确认复合材料的成分。电化学阻抗谱 (EIS) 和动电位极化 (LSV) 测试评估了 CuO/rGO 纳米复合材料的耐腐蚀性。在 HCl 电解质下以 PPM 比率腐蚀的低碳钢板处理纳米复合材料涂层基材。通过将其腐蚀性能与 CuO/rGO 浓度(以 ppm 为单位)进行比较来评估复合材料的协同效应。耐腐蚀数据表明,CuO/rGO 复合材料的抑制剂浓度为 0、25、50、75 和 100 ppm 时性能有所改善。将 rGO 添加到复合材料中可以保护复合材料并加速电荷转移,从而减少腐蚀并提高稳定性。复合材料的 CuO 和 rGO 协同效应无论浓度如何都具有出色的耐腐蚀性,使其成为易腐蚀应用的可行材料。该研究开发了新颖有效的防腐方法,以保护食品、汽车和大型能源行业的材料。
这项研究集中于常规染料敏化太阳能电池(DSSC)。这种类型的太阳能电池通常由诸如照片阳极支持,照片灵敏度(染料),电解质和反电极等组件制成。这项研究调查了来自我们环境中本地采购的光敏剂的特性。还研究了掺杂剂对叶绿素染料的吸光度光谱的影响。天然染料的光学特性表明,染料敏化的材料在可见光区域表现出强烈的620-720 nm的吸收宽带,表明具有更明显的659 nm的光子从光子中吸收红光。使用扫描电子显微镜(SEM),能量色散X射线(EDX)和X射线衍射(XRD)研究了膜的结构表征。最终通过将Tio 2光阳极与计数器电极夹在一起来制备太阳能电池。通过使用太阳能模拟器来分析制造的太阳能调用的电气性能,该太阳能模拟器的效率为0.05%。这是根据短路电流(I SC),开路电流电压(V OC)的实验值计算得出的,填充因子(FF)为0.389 V,0.389 V,0.242 V,0.242 MACM -2和0.48和0.48和0.48和0.48和0.48。关键字:DSSC,吸光度光谱,基于叶绿素的染料,扫描电子显微镜,结构表征介绍
• 专门针对研究生和专业教育市场的专门营销职能,在 Facebook、Instagram 和 LinkedIn 上拥有自己的沟通渠道,拥有超过 12,000 名粉丝。请注意,这些渠道是对接触目标受众的主要战略的补充和支持; • 学生信息系统和应用程序门户,以确保数据处理符合 GDPR。请注意,出于报告目的,学习者数据必须包括某些人口统计信息,必须允许 EIT Food 访问这些信息。因此,强烈建议提案使用可用的系统; • Canvas 学习管理系统,可用于与 EIT Food 合作开发的课程或计划。请注意,提案人必须授予 EIT Food 对课程材料的非独占访问权限,才能在 Canvas 上发布; • MOOC 将在 FutureLearn 或 EdX 上的 EIT Food 频道上发布,具体取决于目标市场。请注意,提案人必须授予 EIT Food 对课程材料的非独占访问权限,才能在任一平台上发布; • 任何收费计划或课程的支付网关; • 日益壮大的校友社区目前由活跃的校友委员会提供支持。学生和专业人士类别的学习者自动有资格加入社区,课程后活动应包括动员 FoodHive 校友平台。
摘要我们报告了单原子镍催化剂在难治性等离子硝酸钛(TIN)纳米材料上使用湿合成方法在可见光光照射下支持的沉积。锡纳米颗粒有效吸收可见光,以产生光激发的电子和孔。光激发电子减少镍前体,以将Ni原子沉积在锡纳米颗粒表面上。产生的热孔被甲醇清除。我们通过改变光强度,光照时间和金属前体浓度来研究锡纳米颗粒上的NI沉积。这些研究结合了光沉积法是由热电子驱动的,并帮助我们找到了单个原子沉积的最佳合成条件。我们使用高角度的环形暗场扫描透射电子显微镜(HAADF-STEM),能量分散X射线光谱(EDX)和X射线光电子光谱(XPS)表征了纳米催化剂。我们使用密度功能理论(DFT)计算来预测Ni原子在TIN上的有利沉积位点和聚集能。TIN的表面缺陷位点最有利于单镍原子沉积。有趣的是,锡天然表面氧化物层上的氧位点也与单个Ni原子表现出很强的结合。等离子体增强的合成方法可以促进单个原子催化剂的光沉积在具有质量特性的广泛金属载体上。
在这项研究中研究了过渡金属对铁素(铁(III)氧化物)化合物的影响。铁氧体样品。X射线分析在三价状态下揭示了Fe期的存在,展示了一个基于(311)反射平面的首选方向的单杆立方尖晶石框架。对于CDFE 3 O 4,Znfe 3 O 4的晶体尺寸,使用Scherer方程的COFE 3 O 4分别得出10.54 nm,18.76 nm和32.63 nm的值。锌铁酸盐与钴和铁氧体相比表现出中间光子性质,镉铁素体的光损失高光损失,钴铁液表现出最小的光学损失。EDX分析证实了Zn 2 +,CO 2 +,Fe 3 +,Cd 2 +和O 2-离子的存在,以支持预期的stoichio-量组成。光学评估表明,COFE 3 O 4纳米颗粒非常适合光电设备,紫外检测器和红外(IR)检测器。与其他样品相比,钴铁素体的VSM测量值比其他样品表现出更高的牢固性和磁饱和度。光致发光(PL)光谱显示出多种颜色,包括青色,绿色和黄色,在铁素体样品的不同波长下。这些发现表明合成样品是由于其可靠的磁性特性而用于高频设备的合适材料。镉铁氧体显示出多磁性结构域的结构,与在锌和钴铁岩中观察到的单磁体结构结构形成对比。
摘要 在以HNO 3 为氧化剂的HF溶液中,银催化刻蚀p型硅变得更加容易。在浸入刻蚀剂溶液之前,在p-Si(100)表面化学沉积银(Ag)。通过在HF/HNO 3 中染色刻蚀,在p-Si上也生成了多孔硅层(PSL)。采用电化学阻抗谱(EIS)、扫描电子显微镜(SEM)、能量色散X射线(EDX)、原子力显微镜(AFM)和X射线衍射(XRD)来评估所生成的PSL的性能。根据SEM,浓度为1×10 −3 M的Ag +离子是在HF/HNO 3 中化学刻蚀之前在Si上沉积的最佳浓度,可得到具有均匀分布的孔隙的PSL。 EIS 数据显示,涂覆的 Si 在 22 M HF/0.5 M HNO 3 中的溶解速度比未处理的 Si 快,从而形成均匀的规则圆形孔 PSL,SEM 显微照片证明了这一点。使用具有两个时间常数的可接受电路模型来拟合实验阻抗值。蚀刻剂 HF 或氧化剂 HNO 3 的浓度增加有助于 Si 的溶解和 PS 的快速发展。AFM 分析表明,随着蚀刻时间的增加,Si 表面的孔宽和粗糙度增加。使用 X 射线光谱衍射来确定不同蚀刻时间后 PSL 的结晶度。
具有化学配方MNFE 2 O 4的锰铁氧体纳米颗粒已通过低温化学降水方法合成。使用X射线衍射(XRD),扫描电子显微镜(SEM),能量分散X射线光谱(EDX)研究纳米粒子的结构和光学特性,傅立叶变换型非红外光谱(FTIR)和UV-vis-visible-visible-visible-vis-visible-visible Absoptignptimptignptimptimptryptimptigptryptryptrepproscophy。XRD确认准备样品的纯尖晶石相的形成。所有观察到的峰对应于具有JCPDS卡编号74-2403的锰铁氧体的标准衍射模式。从XRD数据中,计算出平均体质大小,发现为27.40 nm。FTIR光谱显示了尖晶石铁氧体的特征带。形态。元素组成及其相对比率由EDAX给出,并被发现与其初始计算值一致。紫外吸收光谱显示可见范围内的特征吸收和从紫外可见的吸收数据中确定了制备样品的带隙。mnfe 2 O 4纳米颗粒具有1.4 eV的狭窄带隙,可能在污染物的光催化降解中应用。简单的共沉淀方法被证明是合成纯锰铁氧体纳米颗粒的有效方法。版权所有©2017 VBRI出版社。关键字:共凝结法,锰铁氧体,XRD,带隙,SEM。简介