1 新加坡科技研究局(A*STAR)微电子研究所,新加坡 117685 2 巴黎大学材料与现象实验室,法国巴黎 F-75013 3 南洋理工大学电气与电子工程学院,新加坡 639798 在本研究中,我们报告了一种铜填充硅通孔 (TSV) 集成离子阱的设计、制造和操作。TSV 被直接放置在电极下方,作为离子阱和玻璃中介层之间的垂直互连,随着电极数量的增加和复杂性的提高,可实现任意几何设计。TSV 的集成将离子阱的形状因子降低了 80% 以上,将寄生电容从 32±2 pF 最小化到 3±0.2 pF。尽管没有接地屏蔽层,但仍实现了低射频耗散。整个制造过程在 12 英寸晶圆上进行,并与成熟的 CMOS 后端工艺兼容。我们通过加载和激光冷却单个 88 Sr + 离子展示了该阱的基本功能。我们发现,加热速率(轴向频率为 300 kHz 时为 17 量子/毫秒)和寿命(约 30 分钟)与类似尺寸的阱相当。这项工作开创了 TSV 集成离子阱的发展,丰富了可扩展量子计算的工具箱。
摘要:在过去的十年中,通过便携式电子小工具的快速开发来鼓励能源存储系统的研究。混合离子电容器是一种Nov El电容器 - 电池混合储能设备,由于其高功率数量,同时保持能量密度和较长的生命周期,因此引起了很多兴趣。主要是基于锂的储能技术正在研究用于电网存储。但是,锂储量的价格上涨和间歇性可用性使基于锂的商业化不稳定。因此,已经提出基于钠的技术科学科学作为基于LITH IUM的技术的潜在替代品。钠离子电容器(SICS)是AC知识的,它们是潜在的创新能量存储技术,其具有较低的标准电极电势和比锂离子电容器较低的成本。然而,钠离子的较大半径也有助于不利的反应动力学,低能量密度和短暂的SICS寿命。最近,由于较大的理论能力,环境友好性和SIC的低成本,基于转移的金属氧化物(TMO)候选者被认为是潜力的。这项简要研究总结了TMO和基于钠的TMO的研究作为SIC应用的电极候选物的当前进步。此外,我们详细介绍了SICS TMO的探索和即将到来的前景。关键字:过渡金属氧化物,电极材料,能量密度,功率密度,钠离子电容器。
抽象的Li-Air电池是最重要的下一代电池之一。2D分层材料的开发丰富了液压电池的材料。在这项工作中,提出了对2d Mosi 2 N 4上Li原子的形象和能量的DFT研究。我们提出2D MOSI 2 N 4作为Li-Air电池的阳极和阴极材料的合适材料。2D MOSI 2 N 4的高元素电导率使它成为阳极的优势,而在2d Mosi 2 N 4上,Li 2 O 2生长的低屏障为其作为阴极材料带来了优势。LI负载的MOSI 2 N 4的最大容量预计为129 mAh/g。对于Li负载的MOSI 2 N 4,阳极电势在较大的LI载荷中稳定(相对于Li Bund)稳定(〜 -0.2 V)(Li%= 12〜75%)。作为阴极,在Li 2 O 2平板的生长过程中,开路阴极电势稳定(相对于Li Bulb的2.8 V)。我们的工作揭示了2D最大相的可能性(M是过渡金属,A是Al或Si,而X是C,N或两者兼而有权)作为金属空气电池材料。
美国政府,其任何机构,其任何雇员,支持承包商,或其任何雇员既不对任何信息,设备,产品或程序所披露的任何法律责任或责任,或承担任何法律责任或责任,或者承担任何法律责任或责任,或者表示其使用均不将使用其使用,或者代表其使用不会侵权私人权利。在此引用以商业名称,商标,制造商或其他方式参考任何特定的商业产品,流程或服务。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
抽象的电排放加工是用于导电材料的非规定加工过程之一。它被广泛用于制造复杂的零件,这些零件很难由常规制造过程产生。它基于工件和电极之间的热电能。由于火花在电极和工件之间的缝隙中发生火花,因此通过熔化和汽化来去除金属。工件和电极必须具有导电以产生火花。EDM过程的性能在很大程度上取决于电极。电极被视为EDM过程中的工具。选择电极材料在EDM过程中起着至关重要的作用。不同的电极材料具有不同的特性。因此,EDM过程的性能随不同材料而变化。研究人员已使用不同的材料作为电极来研究材料的影响并改善EDM过程的性能。本文回顾了在EDM工艺中的材料和制造方法领域进行的研究工作。关键字:[EDM,电极,材料,制造过程]简介
摘要 —本文基于 MEMS 技术设计并制作了带穿孔电极的驻极体振动能量收集器。装置中的固定电极上分布有通孔,以优化能量收集过程。在有限元法 (FEM) 模拟和实验中分析并讨论了孔对装置输出功率的影响。可以看出,通孔可以有效降低大气中可移动质量块上的挤压膜空气阻尼力。因此,可以减少由于空气阻尼造成的能量损失,并增加装置的输出功率。还详细研究了孔直径和数量对装置输出功率的影响。通过优化孔的配置,孔直径为 400 µ m、深度为 100 µ m 的穿孔装置在 1.84 m/s 2 的低加速度下表现出最高的功率输出,这证明了未来在自供电电子产品中的良好应用。 [2020-0380]
该项目是由美国能源部国家能源技术实验室资助的部分,部分是通过现场支持合同资助的。美国政府,其任何机构,其任何雇员,支持承包商,或其任何雇员既不对任何信息,设备,产品或程序所披露的任何法律责任或责任,或承担任何法律责任或责任,或者承担任何法律责任或责任,或者表示其使用均不将使用其使用,或者代表其使用不会侵权私人权利。在此引用以商业名称,商标,制造商或其他方式参考任何特定的商业产品,流程或服务。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
摘要:神经电极是神经科学、神经疾病和神经机接口研究的核心设备,是连接大脑神经系统和电子设备的桥梁。目前使用的大多数神经电极都是基于刚性材料,其柔韧性和拉伸性能与生物神经组织有显著不同。本研究采用微加工技术开发了一种基于液态金属 (LM) 的 20 通道神经电极阵列,该阵列采用铂金属 (Pt) 封装材料。体外实验表明,该电极具有稳定的电性能和优异的机械性能,如柔韧性和弯曲性,使电极与颅骨形成保形接触。体内实验还使用基于 LM 的电极从低流量或深度麻醉下的大鼠记录了脑电信号,包括由声音刺激触发的听觉诱发电位。使用源定位技术分析了听觉激活的皮层区域。这些结果表明,基于 20 通道 LM 的神经电极阵列满足脑信号采集的需求,并提供支持源定位分析的高质量脑电图 (EEG) 信号。
摘要。随着科学技术的发展,传统化石燃料的大量消费不仅带来了严重的环境污染,而且会引起能源危机。作为当今世界上必不可少的新能源,锂电池具有许多优势,其他类型的电池没有具有高能量密度,长寿,长寿,低自我释放速度优势,绿色和环境保护等,以及在各种领域中广泛使用的,例如自动,自动,医疗,航空航天等。然而,诸如传统锂电池中石墨材料的低特异性容量和高侧反应等缺点限制了锂电池的应用。石墨烯是由单层厚度组成的二维材料,具有巨大的表面积,高强度和硬度,良好的电导率和导热性,柔韧性和透明度的优势,并具有在锂电池中应用的巨大潜力。在本文中,对于石墨烯作为锂电池的阳极材料,分别讨论了其对锂电池性能的影响,包括循环性能,充电/放电速率和能量密度。此外,本文还总结了在锂电池中应用石墨烯阳极材料的最新进展。
摘要膜电极组件(MEA)的性能阻碍了燃料电池的商业化。MEA受加湿,温度和氢气流量的极大影响。在这项研究中,使用PT/C和COFE/N-C催化剂在质子交换膜燃料电池中确定工作条件对MEA的影响。在此,制备了两种使用NAFION-212膜的MEAS类型的测量和测试。第一个MEA的阳极和阴极分别用Pt/C和COFE/N-C催化剂覆盖,而第二个MEA在两个电极上使用了PT/C催化剂。使用循环伏安法和电化学障碍光谱谱分别以PT/C和COFE/N-C催化剂的形式表征了电极,分别获得电化学表面积(ECSA)和电导率的电导率。在不同的工作条件下测试了两个测量的性能,例如各种加湿器温度(40°C,60°C,80°C和100°C)和氢气流速(100、200、300和400 mL/min)。具有PT /C催化剂的电极比COFE /N-C电极(0.018 m 2 /g)表现出更高的ECSA(0.245 m 2 /g)。类似地,PT/C电极具有比COFE/N-C电极(4.4×10 -3 s/cm)更高的电导率(7.2×10 -3 s/cm)。因此,在两个电极上使用PT/C催化剂的第二MEA的开路电压(OCV)均显示出比第一MEA(0.790 V)的OCV更高的值(0.890 V)。此外,加湿器温度在80°C下最佳,并且在第二个和第一个MEA中,其功率密度水平分别高达10.14和3.43 mW/cm 2。此外,MEA的性能还受氢气流量的影响。在第一个MEA的最佳氢气流速为400 mL/min的情况下,实现了4.93 mW/cm 2的功率密度。同时,第二个MEA需要较低的氢气流速(200 mL/min)才能达到10.14 mW/cm 2的最大功率密度。关键字:质子交换膜燃料电池,MEA性能,Co-Fe/n-C,加湿温度,氢气流速