当前对电解铝阴极碳钠渗透的研究主要是测量阴极膨胀曲线,主要显示宏观特征。然而,显微镜结构通常是不流失的。作为多孔介质,阴极碳块的扩散性能与其内部孔结构紧密相关。将阴极碳块视为多相复合材料,本研究从微结构的角度研究了钠扩散过程。开发了一个预测钠扩散的模型,考虑了孔隙率,温度,结合效应,电流降低和分子比例等因素。在Python中实现了一个随机聚合模型,并将其导入到有限元软件中,以使用Fick的第二定律模拟钠扩散。结果表明,孔隙率提高,温度较高,结合效应降低,电流密度增加和较高的分子比增强了钠浸润,降低了扩散耐药性并增加了扩散系数。模拟与实验结果很好地对齐,证实了其准确性和可靠性。
摘要生成氢,通过碱性水电解显示出有望作为能源的希望。本评论探讨了选择电极和评估催化剂以提高氢产生的效率和性能的重要意义。它总结了与碱性电解反应有关的激活能量和损失,强调了电极材料和催化剂的必要性。审查还涉及诸如电力消耗和基于铂金属的电催化剂之类的挑战,该催化剂提出了各种电极材料和催化剂,具有较高的活性和氢生产的选择性。此外,它讨论了促进副产品与氢气分离的电解细胞设计。该研究表明,在10、500和1000 mA·Cm -2时,势较低,较低的70、318和361 mV,NIOX/NF表现出强烈的碱氢的演化活性,从而在碱性HER中表现出色。此外,它概述了碱性水电解技术的进步,该技术着重于提高效率和降低与电力消耗相关的运营成本。总体而言,本综述强调了选择电极和评估催化剂在优化碱性水电产生中的作用。
该报告的范围是主要关注氧气市场,生产场景和最终在该项目中考虑的案例研究中使用机会。基于讨论的氧气的各个市场,钢铁行业对绿色氢的未来进行了巨大的投资,因为在其过程中需要大量的过程才能摆脱依赖煤炭的生产。该病例已被研究以提供从100兆瓦电解器产生的氧气以用于燃烧或炉子。加工氧气以去除氢和水以去除氢和水。它将进一步压缩至15个bar,可以通过管道运送到钢铁行业。同样,研究了另一例,用于在医院提供2500张病床的医用氧气,每年需要约1,210万NM3的氧气。提出了一个由近海风电场供电的20 MW电解器,然后在200 bar处通过圆柱运输纯化的氧气。
熔融月壤电解作为一种原位资源利用 (ISRU) 技术,有可能在月球表面生产氧气和金属合金;为地月空间探索,以及最终的火星太空探索打开新的大门。这项研究探讨了控制电解气泡形成、生长、分离和上升的基本物理学。为此,开发并运行了计算流体动力学 (CFD) 模型,以模拟水电解、熔盐电解 (MSE) 和熔融月球月壤 (MRE) 电解在多个失重水平下的情况。结果表明,失重、电极表面粗糙度(可能是由于表面退化)、流体性质和电极方向都会影响电解效率,甚至可能通过延迟气泡分离而停止电解。在设计和操作失重水平下的电解系统时,必须考虑这项研究的结果。
降低通过敬畏的电解H 2的生产成本(今天总计每千克5.50 h)4需要通过降低电解电池超潜在的同时保留Ni基电催化剂的典型的高电催化剂耐用性来发展更有效的电极。商业成熟度,该电解允许在2 a cm 2以上进行持续操作,但使用大量昂贵且稀有的铂金属金属(PGM),尤其是PT和IR。在过去的十年中,出现了一种新颖的技术,将高生产率PEMWE与使用非关键资源相结合的新技术已经出现,即一种新型的电解质类,即碱性膜水电油(AMWES),将阴离子交换膜用作分离器,并可以用PGM-FRE-FRE-FRE-FEM-FREA cATALYSTS进行操作,5使技术和
摘要:该研究基于太阳辐射数据,对单一和混合碱性水电解槽和储能系统进行了绿色氢气生成的技术经济分析。此外,还进行了碳足迹研究,以估算已开发的系统的二氧化碳排放量。碱性水电解槽和储能系统的最佳规模由考虑碳排放碳税的遗传算法确定。根据分项成本估算结果,单一系统和混合系统的单位氢气生产成本分别为 6.88 美元/千克和 8.32 美元/千克。此外,资本成本是确定碱性水电解槽和储能系统最佳规模的关键因素,这对于降低单位氢气生产成本至关重要。最后,考虑到二氧化碳税的上升趋势,需要努力将生产绿色氢气的资本成本降至最低。
摘要:该研究基于太阳辐射数据,对单一和混合碱性水电解槽和储能系统进行了绿色氢气生成的技术经济分析。此外,还进行了碳足迹研究,以估算已开发的系统的二氧化碳排放量。碱性水电解槽和储能系统的最佳规模由考虑碳排放碳税的遗传算法确定。根据分项成本估算结果,单一系统和混合系统的单位氢气生产成本分别为 6.88 美元/千克和 8.32 美元/千克。此外,资本成本是确定碱性水电解槽和储能系统最佳规模的关键因素,这对于降低单位氢气生产成本至关重要。最后,考虑到二氧化碳税的上升趋势,需要努力将生产绿色氢气的资本成本降至最低。