摘要:与传统的锂离子电池(LIBS)相比,固态电池(SSB)是有望实现高能密度和安全性提高的下一代电池的有希望的。尽管市场潜力很大,但很少有研究调查了SSB回收过程,以恢复和重用循环经济的关键原始金属。对于传统的LIB,湿法铝回收已被证明能够生产高质量的产品,而浸出是第一个单元操作。因此,必须建立对固体电解质的浸出行为的基本理解,这是具有不同lixiviants的SSB的关键组成部分。这项工作研究了矿物质酸(H 2 SO 4和HCl),有机酸,有机酸(Formic,乙酸,乙酸,草酸和柠檬酸)和水中最有希望的Al和最有前途的al和TA取代的Li 7 Li 7 Li 7 Li 7 La 3 Zr 2 O 12(LLZO)固体电解质。使用实际的LLZO生产浪费在1 m酸中以1:20 s/L的比率在25℃下24小时进行。结果表明,诸如H 2 SO 4之类的强酸几乎完全溶解了LLZO。用草酸和水观察到鼓励选择性浸出特性。对LLZO浸出行为的这种基本知识将为未来的优化研究提供基础,以开发创新的水透明质量SSB回收过程。
摘要:硫化聚丙烯腈(SPAN)已被研究作为锂硫电池阴极中元素硫的替代品。与元素硫不同,该材料在充电和放电过程中具有固相转化反应,有望在稀电解质条件下提供长循环寿命。然而,这种改变的机制也提出了一套独特的电解质设计要求。在本综述中,我们概述了电解质工程的关键进展,并讨论了这些电解质的设计原理,重点关注溶剂化结构及其控制锂和 SPAN 表面界面化学的能力。然后,我们主张需要开发具有改进传输性能的电解质,同时保持其高稳定性,以实现具有实用能量密度的 Li-SPAN 电池。
锂氧(Li-O 2)电池被认为是下一代储能系统的预期继任者。但是,通常使用的有机盐电解质的全面特性仍然不令人满意,更不用说它们的昂贵价格,这严重阻碍了Li-O 2电池的实际生产和应用。在此,我们提出了一个低成本的全有机硝酸盐电解质(lino 3-kno 3-dmso),用于Li-O 2电池。与有机盐电解质相比,无机硝酸盐电解质具有更高的离子电导率和更宽的电化学稳定窗口。K +的存在可以稳定O 2-中间体,从而通过溶液途径扩大能力来促进放电过程。即使在0.01 m的超低浓度下,K +仍然可以保持稳定以促进溶液放电过程,并且还具有通过静电屏蔽抑制树突生长的新功能,从而进一步增强了电池稳定性并有助于长周期寿命。结果,在0.99 m的Lino 3 - 0.01 m KNO 3 -DMSO电解质中,Li-O 2电池表现出延长的循环性能(108个循环)和出色的速率性能(2 A·G-1),比有机盐的含量明显优于有机盐。
在附录A或B至10 CFR第1021部分中列出的一系列动作中, 适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。在附录A或B至10 CFR第1021部分中列出的一系列动作中, 适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。适用于10 cfr part 1021中列出的行动中的第1021部分。安全,健康或DOE或行政命令的类似要求; (2)要求将废物存储,处置,恢复或治疗设施(包括焚化炉)进行选址和施工或重大扩展,但该提案可能包括分类排除的废物存储,处置,恢复或治疗措施或设施; (3)干扰危险物质,污染物,污染物或cercla排除的石油和天然气产品,这些石油和天然气产品在环境中已经存在,因此会有不受控制的或无法控制的释放; (4)有可能对环境敏感的资源产生重大影响,包括但不限于10 CFR第1021部分(第4)段中列出的资源,D部分(附录B部分); (5)涉及基因工程的生物,合成生物学,政府指定的有害杂草或入侵物种,除非提出的活动以设计和操作的方式包含或限制,以防止未经授权释放到环境中并按照适用的要求进行,例如在10 cf(5)中列出的1021 cfr Part 1021 cfr part subpart 1021,subpart b。
电极| SE接口。3–5其中一些问题与SE在电极材料方面的电化学稳定性以及SE分解的相互作用的形成有关。如果可以形成稳定的固体电解质相(SEI),例如在常规锂离子细胞中石墨和优化的液体电解质之间的界面,这种初始不稳定不一定是一个问题。6 SE对碱金属的分解会导致形成其电子性能将决定其增长的相互作用的形成:7(a),如果大多数分解产物在电子上是电子上绝缘的,那么SEI的增长将最终停止,并且对电源的电源不可能(如果能够远离电源),则可能会影响电源的电源,如果它可能会影响电源,则该电源可能会造成电源的影响,如果是by的电源,则可以在电源范围内构成,而该障碍物是可以在电源上造成的,如果是by sei的范围,则可以在电源上造成,而该障碍物是可以在电源上造成的。混合离子电子传导(MIEC)之间的生长将不间断,直到消耗所有SE并发生短路。后一种相间类型对于具有持久性能的SSB不兼容。可以访问相间的化学组成对于确定产生哪种类型的相间以及是否在细胞中达到稳定性至关重要。X射线光电子光谱(XPS)是用于化学组成分析的出色表面表征技术。分析埋入界面的组成是一个挑战,因为XPS的深度分辨率有限。最近,已经开发了各种原地8-10和Operando技术11,12来解决此问题。XPS的深度分辨率有限,是由于测量的性质归因于收集光电子的收集,这些光电子在距离最初与原子核相距不远后从样品表面逸出,它们最初与它们最初界定的原子核(通常在10 nm内,在小于10 nm的范围内,用于由Alkα源激发的光电子,并经过Na的金属)。对于所有这些,其想法是使SE表面上的碱金属层足够薄,以使SE发射的光电子(可能是由于相互重点)穿过金属叠加层。为了产生碱金属层,一种技术包括将其从由相同的碱金属组成的计数器电极上镀在SE表面上,同时分析了相间产物Operando。11在这种情况下,可以从任何XPS仪器中存在的电子洪水枪向SE表面提供低能电子。尽管该技术已经证明了其表征相互作用组成的功效,但可以从中提取的信息程度(例如碱金属层的增长率行为)尚未得到充分理解。这项研究的目的是介绍可以从该操作方案中提取的信息深度。结果分为两种成对的文章(第一部分:实验;第二部分:理论13)。在第1部分中,研究了NASICON家族的SE表面上Na金属(Na 0)的电化学稳定性(Na 3.4 Zr 2 Si 2.4 P 0.6 O 12,进一步称为NZSP)。总的来说,这项工作介绍了一个了解增长的框架nzsp是因为其高离子电导率使其成为有前途的候选SE,14,但其对NA 0的稳定性仍在争论中。理论DFT计算预测Na 3 Zr 2 Si 2 PO 12(由Na 1 + X Zr 2 Si X Zr 2 Si X P 3-X O 12,0≤x≤3定义的NASICON组成空间的最接近的阶段是0 v在Na/Na +的Na/Na +应不稳定的Na/Na 2 ZROS na 2 ZRO和Na 2 ZRO 3,4 sRO 3,4 sRO 3,4 s sRO 3,4 s sRO 3)。15–17在Na 0 | Na 3 Zr 2 Si 2 PO 12也通过电化学阻抗光谱和前XPS研究在实验中提出。17,18本研究将区分两种Na 0 | NZSP接口:第一个是Na 0和抛光的NZSP(NZPS抛光)颗粒之间的接口;第二个是Na 0和As-Sinter的NZSP(NZSP AS)颗粒之间的接口。此比较旨在阐明NZSP表面化学对其对Na 0的稳定性的影响。的确,在我们小组的先前研究中确定了热处理促进在As-Sintered NZSP样品表面上形成薄的Na 3 PO 4层,当NZSP表面抛光时,该层可以去除。14 AS Na 3 PO 4是一个阶段,预测通过DFT计算对Na 0稳定,19该比较的目的是评估Na 3 PO 4作为自我形成的缓冲层的效率。对第一个实验部分的讨论着重于从XPS拟合模型中提取信息,以告知Na 0 | nzsp抛光和Na 0 | Na 0 | Na 3 PO 4 | NZSP接口的相间形成动力学。时间解析的电化学阻抗光谱(EIS)也被用来评估相互作用的离子电阻率。
在可持续能源生产和发展的框架中,电能存储 (EES) 是实现这一目标的关键因素。处于能源存储最前沿的是基于电化学存储的系统,例如电池和电化学电容器。多年来,电池和电双层电容器 (EDLC) 的完美组合已经出现,作为抵消这两种技术特定问题的一种方式,并代表了未来 EES 设备达到高能量和功率密度的新方向。作为一种战略性无材料低成本技术,非水混合超级电容器 (KIC) 代表了高功率应用的有前途的解决方案。这里介绍的 KIC 技术由活性炭正极和超大石墨负极组成,浸入乙腈基非水电解质和钾盐中 [1]。该技术发展的主要障碍是结果的不可重复性。对于锂离子电池,化成工艺是关键的制造步骤,可在负极表面形成稳定致密的固体电解质界面 (SEI),确保均匀稳定的性能。此步骤也被认为对 KIC 系统至关重要。得益于适当的化成工艺 [2] 的开发,可以形成均匀连续且 KF 含量低的 SEI,并且软包电池规模的性能现在稳定且可重复。此外,观察到了 SEI 中 KF 含量的变化与循环性能的变化之间的相关性。本文将介绍和讨论这一结果。
我要感谢我的大学有机会与IBM研究合作。我想对IBM,尤其是电池组表示感谢,以欢迎我并提供他们的支持。特别感谢Max Giammona和Vidushi Sharma在协助我方面的友善和专业知识。我感谢Murtaza Zohair的坚定可用性,并以友好的举止有助于我的理解。Andy T. Tek,电池实验室的超级英雄,Andy T. Tek,电池实验室的超级英雄,
所有声明,技术信息,建议和建议仅用于信息目的,不打算,不应将其解释为任何类型或销售期限的保修。读者被告知,三菱化学高级材料不能保证此信息的准确性或完整性,并且客户有责任测试和评估在任何给定应用中或用于完成设备中使用的三菱化学高级材料产品的适用性。Acetron®,Ertacetal®,Ertalon®,Ertalyte®,Ketron®,Nylatron®,TechTron®和Tivar®是三菱化学高级材料的注册商标。由三菱化学高级材料创建的设计和内容,并受版权法保护。版权所有©2022三菱化学高级材料。保留所有权利。
电气化运输和对电网储能的需求不断增加,继续在全球范围内建立动量。但是,锂离子电池的供应链面临着资源不足和稀缺材料的日益挑战。因此,开发更可持续的电池化学成分的激励措施正在增长。在这里,我们显示了带有引入LICL作为支撑盐的ZnCl 2电解质。一旦将电解质优化为Li 2 ZnCl4Å9H2 O,组装的Zn – Air电池可以在800小时的过程中以0.4 mA cm -2的电流密度在-60°C和+80°C之间维持稳定的循环,具有100%的库班式效率,用于Zn剥离/platipper/plate/plate。即使在-60°C下,> 80%的室温功率密度也可以保留。高级表征和理论计算揭示了造成优秀性能的高渗透溶剂化结构。强酸度允许Zncl 2接受捐赠的Cl-离子形成ZnCl 4 2-阴离子,而水分子在低盐浓度下保留在游离溶剂网络中,或与Li离子坐标。我们的工作提出了一种有效的电解质设计策略,可以实现下一代Zn电池。