非水系钠电池是下一代电化学储能装置的理想候选者。然而,尽管其在室温下性能表现良好,但它们在低温(如 < 0 °C)下的操作会受到电解质电阻增加和固体电解质界面 (SEI) 不稳定性增加的不利影响。在此,为了解决这些问题,我们提出了特定的电解质配方,其中包括线性和环状醚基溶剂以及三氟甲磺酸钠盐,它们在低至 -150 °C 的温度下仍具有热稳定性,并能够在低温下形成稳定的 SEI。在 Na||Na 纽扣电池配置中测试时,低温电解质可实现低至 -80 °C 的长期循环。通过原位物理化学(例如 X 射线光电子能谱、低温透射电子显微镜和原子力显微镜)电极测量和密度泛函理论计算,我们研究了高效低温电化学性能的机制。我们还报告了在 -20°C 和 -60°C 之间对完整的 Na||Na 3 V 2 (PO 4 ) 3 纽扣电池的组装和测试。在 -40°C 下测试的电池显示初始放电容量为 68 mAh g -1,在 22 mA g -1 下经过 100 次循环后容量保持率约为 94%。
图 3. 含 GPE 陶瓷的物理化学性质。 (a) 由 PVDF-HFP 和 Al 2 O 3 纳米粒子通过路易斯酸碱分子间键合形成的准固态聚合物示意图。 (b) GPE 的电解质吸收分析与 A 2 O 3 含量的关系。 经许可复制。 96 版权所有 2020,Wiley-VCH。 (c) 具有钠离子传导路径的复合混合固体电解质 (HSE) 的模型表示。 (d) 离子跳跃和增塑剂离子传输对电导率和 Na 迁移数的贡献图。 (e) 复合固体膜、醚基液体电解质和 HSE 的热重分析 (TGA) 结果。 经许可复制。 98 版权所有 2015,皇家化学学会。 (f) 所得 GPE 薄膜在室温下的离子电导率,通过改变填料含量进行改性。 (g) 离子电导率与温度的关系。 (h)GPE-0 和 GPE-4 薄膜的线性扫描伏安曲线。经许可转载。99 版权所有 2021,爱思唯尔。
f g -1)和pedotoh/pei(142.3 f g -1)的扫描速率为10 mV s -1。随后,我们制造了
摘要具有良好安全性,易于加工性和高离子电导率的基于固体聚合物的复合电解质(SCPE)对于开发先进的全固态锂金属电池(ASSLMBS)具有重要意义。但是,电极和固体电解质之间的界面兼容性较差导致较大的界面阻抗削弱了电池的电化学性能。Herein, an interpenetrating network polycarbonate (INPC)-based composite electrolyte is constructed via the in- situ polymerization of butyl acrylate, Li 7 La 3 Zr 2 O 12 (LLZO), Lithium bis(trifluoromethanesulphonyl)imide, succinonitrile and 2,2-azobisisobutyronitrile on the base of a对称聚碳酸酯单体。Benefiting from the synergistic effect of each component and the unique structure features, the INPC&LLZO-SCPE can effectively integrate the merits of the polymer and inorganic electrolytes and deliver superior ionic conductivity (3.56 × 10 -4 S cm -1 at 25 °C), an impressive Li + transference number [ t ( Li+ ) = 0.52] and a high electrochemical stability window (up到5.0 v vsli + /li)。基于此,组装了LifePo 4 /Inpc&llzo-Scpe /li和Lini 0.6 Co 0.2 Mn 0.2 o 2 /inpc&llzo-scpe /li的电池,它们显示出156.3和158.9 mah g -1 and Efence for 86.8%和95.4%和95.4%%和95.4%%的初始能力,它们具有较大的初始能力C分别。这项工作为高压ASSLMB的新型聚碳酸酯复合电解质提供了新的途径。
b“ Mxene具有通用公式M 1.33 CT Z的MXENE于2017年首次报道。[6]这些mxenes来自平面内排序的第四纪最大相位,其公式为(m'1.33 m \ xe2 \ x80 \ x9c 0.66)alc。蚀刻后,蚀刻了Al层和少数过渡金属M \ Xe2 \ X80 \ X9D,将其留下了平面内有序的分区的2D纸。By now MXenes are well recognized as performing well as negative electrodes in AASCs, [5a\xe2\x80\x93c,7] because of their high conductivity, excellent hydrophilicity, great tolerance to accom- modate various ions and negative operation potential window in three electrode configurations (e.g., to 1.6 V vs. Ag/AgCl in 21 M KCH 3 COO [8] ).最近,由于其高密度和无效材料的避免,诸如粘合剂,导电剂等,更多的工作集中在基于MXENE的自由层膜上,以实现SCS中的高体积电容(C V)。[9]在先前的报告中,硫酸(H 2 SO 4)一直是选择的电解质。细胞通常达到C S> 300 F G 1或> 1500 F CM 3的高值。[5d,10]但是,与中性水解物相比,H 2 SO 4既安全也不是绿色。进一步的问题是,i)风险“
由于地壳中锂的含量有限(<0.1 pg kg 1),人们非常担心电网储能和电动汽车所需的锂资源可能不足。4,5 为了超越锂离子电池,包括 Na、K、Mg 和 Ca 在内的丰富的碱金属和碱土金属元素已被视为开发下一代可充电电池的有吸引力的阳极材料。4 – 8 多价镁电池在过去二十年中受到了越来越多的研究关注。镁电池的电解质研究最为丰富,包括多种多样的 Mg – Cl 复合电解质和先进的无 Cl 镁电解质设计,以及对电解质溶液和界面化学的深入了解。7,9 然而,由于 Mg 2+ 离子的强路易斯酸性(以离子电负性表示)(47.6 eV,图 1),10
仅供研究使用。不可用于诊断程序。© 2022 Thermo Fisher Scientific Inc. 保留所有权利。MiraMist 是 Burgener 的商标。SPEX CertiPrep 是 SPEX CertiPrep Group LLC 的商标。所有其他商标均为 Thermo Fisher Scientific 及其子公司的财产。此信息作为 Thermo Fisher Scientific 产品功能的示例提供。它不旨在鼓励以任何可能侵犯他人知识产权的方式使用这些产品。规格、条款和定价可能会发生变化。并非所有产品在所有国家/地区都有售。请咨询您当地的销售代表了解详情。AN000243-EN 0422C
作为全固态电池的核心,固态电解质由于其相对于传统液态电解质的优势而受到充分重视。1–3 各类固态电解质中,聚合物电解质 4–7 由于其优异的机械性能和分子改性而成为研究的重点。8 但其室温离子电导率较差,严重限制了固态锂电池(SSLB)的使用。目前,已采用多种方法来提高固态聚合物电解质的离子电导率,如引入活性填料和惰性填料 9。锂盐,例如 LiTFSI、g-LiAlO 2、10、11 和 LiN 3、12,通常用作活性填料,因为它们可以直接为聚合物体系提供 Li+。惰性填料如 TiO2(参考文献 13)、ZrO2 14 和 Al2O3(参考文献 15,16)可以通过降低聚合物结晶度或将聚合物链与 Li+偶联来提高体系的离子电导率。16,17
图 1:kMC 模拟结束时气体种类 (a, b) 和 SEI 产物 (c, d) 的平均分数随施加电位的变化。模拟是在两种条件下进行的,反映了 SEI 形成的不同方式。为了模拟在靠近负极处形成 SEI 的情况,在形成显著的界面层 (a, c) 之前,允许在没有隧道势垒的情况下进行还原 (D = 0 . 0 ˚ A)。由于电极很可能在高施加电位下被覆盖,因此在实际电池环境中可能无法进入低电位区域 (低于 +0.5V vs Li/Li + 的施加电位)。因此,该区域已被阴影化。为了模拟远离负极处形成 SEI (b, d) 的情况,在存在部分电子绝缘的界面层的情况下,相对较厚的隧道势垒 (D = 10 . 0 ˚ A) 减缓了还原速度。提供了表示平均值标准误差的误差线,但通常太小而无法看到。
高能量密度固态电池需要高面积容量的阴极。在这里,我们展示了一种用于循环 3-6 mAh/cm 2 NMC811 复合阴极的双层聚合物电解质设计。双层电解质包括交联 PEO 基电解质层和线性 PEO 基电解质层。前者提供抗枝晶性,后者在循环过程中提供与阴极的无缝界面。使用单层膜会导致第一次循环中严重短路或极低的库仑效率 (CE)。面向锂阳极的刚性抑制枝晶的电解质和确保在循环过程中与阴极接触的更柔软的阴极集成电解质的一般概念可能为实现高能量密度阴极提供一种模式。