Kerstin Neuhaus a André Gröschel b,c,d 和 Nella M. Vargas-Barbosa a,d * a Forschungszentrum Jülich GmbH, IEK-12: Helmholtz Institute Münster, Corrensstrasse 46,
摘要电动汽车和便携式电子设备的重要市场正在推动高能固态锂电池的开发。但是,固体电解质仍然是固态锂电池开发的主要障碍,这主要是由于缺乏与高压阴极和高压阴极和锂金属阳极兼容的单个固体电解质。这些问题可能会通过多层电解质解决。可以单独调整电解质的每一层特性,这不仅满足阴极和阳极的不同需求,而且还弥补了电解质每一层的缺点,从而实现了良好的机械性能以及化学和电化学稳定性。本评论首先介绍了均质单层电解质的简要介绍。随后引入了多层聚合物电解质的设计原理以及使用最近工作的示例应用这些原理。最后,给出了一些建议作为未来工作的指南。
在高峰时段可再生能源产生的残余能量已成为重要的话题。对于ESS,使用各种储能设备,包括可充电电池,氧化还原电池,燃料电池和超级电容器。2 - 4通常,对于短到中期的电力供应,电池和电容器被认为是有利的能量存储设备,而超级电容器(SCS,也称为电化学电容器)被认为是为了提高稳定的电力和电池的频率调节用途,以供电,以供应稳定的电力,以供电,以供电稳定供电。5超级电容器是一种有利的能源存储设备,可用于快速功率恢复目的,这是由于有利的功能,例如快速充电/放电特性,上功率密度,半永久性循环寿命,低保持成本,快速响应特征 - 速度 - 静态和高稳定性。然而,基于商用电气双层电容器(EDLC)超级电容器表现出低能密度和中等的工作电压窗口,这导致大量细胞串联连接起来,以实现所需的能量并满足能量需求,最终增加了基于超级能力的ESS的生产成本。6
电气化运输和对电网储能的需求不断增加,继续在全球范围内建立动量。但是,锂离子电池的供应链面临着资源不足和稀缺材料的日益挑战。因此,开发更可持续的电池化学成分的激励措施正在增长。在这里,我们显示了带有引入LICL作为支撑盐的ZnCl 2电解质。一旦将电解质优化为Li 2 ZnCl4Å9H2 O,组装的Zn – Air电池可以在800小时的过程中以0.4 mA cm -2的电流密度在-60°C和+80°C之间维持稳定的循环,具有100%的库班式效率,用于Zn剥离/platipper/plate/plate。即使在-60°C下,> 80%的室温功率密度也可以保留。高级表征和理论计算揭示了造成优秀性能的高渗透溶剂化结构。强酸度允许Zncl 2接受捐赠的Cl-离子形成ZnCl 4 2-阴离子,而水分子在低盐浓度下保留在游离溶剂网络中,或与Li离子坐标。我们的工作提出了一种有效的电解质设计策略,可以实现下一代Zn电池。
一、引言 寻找生态和可持续的能源存储系统必须继续解决化石燃料的有限供应及其对环境的负面影响。绿色能源的来源包括风能、海洋能、光伏电池和植物能[1-3]。环保和可持续的电化学储能装置是解决能源有限和污染问题的关键。几十年来,电解质的进步推动了电化学储能装置的发展。基于水电解质的装置在各种储能技术中受到了广泛关注,由于其安全环保、价格低廉和易于制造,应该属于下一代“绿色”电池。水的不可燃性使其成为比易燃有机电解质更安全、更环保的溶剂。
广泛使用的能源——锂离子电池——的基本成分是电解质,电解质通常是非水有机溶剂 [1]。电解质的液态及其特性(例如易燃性)会对电池的尺寸和重量产生负面影响,在数字化、小型化和移动性不断提高的时代,这些因素必须得到改善。此外,电池中使用的碱金属和有机溶剂对水分和氧气敏感,这会严重影响使用安全性,因为存在着火甚至爆炸的风险 [2]。例如,这些缺点会影响电动汽车,因为电池占汽车质量和体积的很大一部分 [3]。使用聚合物基电解质对于解决环境问题至关重要。消除液态易燃成分是使使用聚合物的能源解决方案更加友好的一种方法。改进的目的是开发适合能量密度和安全性的固态电池,以用于下一代智能、安全、高性能的环保电池。锂离子技术的进步还在于使用可生物降解的聚合物,如壳聚糖、淀粉、甲基纤维素和葡聚糖,并取得令人满意的电气性能测试结果,从而促进废旧电池部件的废物管理过程
电极| SE接口。3–5其中一些问题与SE在电极材料方面的电化学稳定性以及SE分解的相互作用的形成有关。如果可以形成稳定的固体电解质相(SEI),例如在常规锂离子细胞中石墨和优化的液体电解质之间的界面,这种初始不稳定不一定是一个问题。6 SE对碱金属的分解会导致形成其电子性能将决定其增长的相互作用的形成:7(a),如果大多数分解产物在电子上是电子上绝缘的,那么SEI的增长将最终停止,并且对电源的电源不可能(如果能够远离电源),则可能会影响电源的电源,如果它可能会影响电源,则该电源可能会造成电源的影响,如果是by的电源,则可以在电源范围内构成,而该障碍物是可以在电源上造成的,如果是by sei的范围,则可以在电源上造成,而该障碍物是可以在电源上造成的。混合离子电子传导(MIEC)之间的生长将不间断,直到消耗所有SE并发生短路。后一种相间类型对于具有持久性能的SSB不兼容。可以访问相间的化学组成对于确定产生哪种类型的相间以及是否在细胞中达到稳定性至关重要。X射线光电子光谱(XPS)是用于化学组成分析的出色表面表征技术。分析埋入界面的组成是一个挑战,因为XPS的深度分辨率有限。最近,已经开发了各种原地8-10和Operando技术11,12来解决此问题。XPS的深度分辨率有限,是由于测量的性质归因于收集光电子的收集,这些光电子在距离最初与原子核相距不远后从样品表面逸出,它们最初与它们最初界定的原子核(通常在10 nm内,在小于10 nm的范围内,用于由Alkα源激发的光电子,并经过Na的金属)。对于所有这些,其想法是使SE表面上的碱金属层足够薄,以使SE发射的光电子(可能是由于相互重点)穿过金属叠加层。为了产生碱金属层,一种技术包括将其从由相同的碱金属组成的计数器电极上镀在SE表面上,同时分析了相间产物Operando。11在这种情况下,可以从任何XPS仪器中存在的电子洪水枪向SE表面提供低能电子。尽管该技术已经证明了其表征相互作用组成的功效,但可以从中提取的信息程度(例如碱金属层的增长率行为)尚未得到充分理解。这项研究的目的是介绍可以从该操作方案中提取的信息深度。结果分为两种成对的文章(第一部分:实验;第二部分:理论13)。在第1部分中,研究了NASICON家族的SE表面上Na金属(Na 0)的电化学稳定性(Na 3.4 Zr 2 Si 2.4 P 0.6 O 12,进一步称为NZSP)。总的来说,这项工作介绍了一个了解增长的框架nzsp是因为其高离子电导率使其成为有前途的候选SE,14,但其对NA 0的稳定性仍在争论中。理论DFT计算预测Na 3 Zr 2 Si 2 PO 12(由Na 1 + X Zr 2 Si X Zr 2 Si X P 3-X O 12,0≤x≤3定义的NASICON组成空间的最接近的阶段是0 v在Na/Na +的Na/Na +应不稳定的Na/Na 2 ZROS na 2 ZRO和Na 2 ZRO 3,4 sRO 3,4 sRO 3,4 s sRO 3,4 s sRO 3)。15–17在Na 0 | Na 3 Zr 2 Si 2 PO 12也通过电化学阻抗光谱和前XPS研究在实验中提出。17,18本研究将区分两种Na 0 | NZSP接口:第一个是Na 0和抛光的NZSP(NZPS抛光)颗粒之间的接口;第二个是Na 0和As-Sinter的NZSP(NZSP AS)颗粒之间的接口。此比较旨在阐明NZSP表面化学对其对Na 0的稳定性的影响。的确,在我们小组的先前研究中确定了热处理促进在As-Sintered NZSP样品表面上形成薄的Na 3 PO 4层,当NZSP表面抛光时,该层可以去除。14 AS Na 3 PO 4是一个阶段,预测通过DFT计算对Na 0稳定,19该比较的目的是评估Na 3 PO 4作为自我形成的缓冲层的效率。对第一个实验部分的讨论着重于从XPS拟合模型中提取信息,以告知Na 0 | nzsp抛光和Na 0 | Na 0 | Na 3 PO 4 | NZSP接口的相间形成动力学。时间解析的电化学阻抗光谱(EIS)也被用来评估相互作用的离子电阻率。
摘要:吸附CO是CO 2对燃料的电催化还原的关键中间体。CO 2 RR电催化剂的定向设计集中在策略上,以了解和优化跨表面的CO吸附焓差异。然而,这种方法在很大程度上忽略了竞争性电解质吸附在定义与催化相关的CO表面种群中的作用。使用原位红外光谱电子化学,我们揭示了电子竞争对可逆CO与AU和CU催化剂结合的对比影响。虽然可逆的CO与AU表面的结合是由吸附水的取代和重新定向驱动的,但CO与Cu表面的结合需要还需要还原吸附的碳酸盐阴离子的位移。电解质竞争在AU和Cu上的电解质竞争的不同作用在CO在两个表面上积累的潜在区域中导致约600 mV的差异。AU和CU上的对比鲜明的CO吸附化学测定法还解释了它们的不同反应性:水吸附驱动从AU表面中释放,从而进一步削弱了碳酸盐脱附,而碳酸盐解吸动力驱动CO在Cu表面上积累,从而进一步减少了氢键。这些研究提供了直接洞察电解质成分如何用作对CO表面种群进行微调的强大设计参数,从而将CO 2-to-fuels反应性的反应性。
摘要 RELCoBatt 项目的目的是开发一种低成本的可溶铅电池,该电池使用回收的铅酸电池中的电解质。该项目开发的电池与其他液流电池不同,因为它在两个电极反应中使用相同的溶剂化 Pb 2+ 离子,这意味着它不需要膜,并且使用单一电解质,在运行过程中通过电池组泵送电解质(图 1)。在这项工作中,通过使用 3 种不同的电解质成分进行实验来研究充电状态的影响,模拟不同的充电状态:
所有声明,技术信息,建议和建议仅用于信息目的,不打算,不应将其解释为任何类型或销售期限的保修。读者被告知,三菱化学高级材料不能保证此信息的准确性或完整性,并且客户有责任测试和评估在任何给定应用中或用于完成设备中使用的三菱化学高级材料产品的适用性。Acetron®,Ertacetal®,Ertalon®,Ertalyte®,Ketron®,Nylatron®,TechTron®和Tivar®是三菱化学高级材料的注册商标。由三菱化学高级材料创建的设计和内容,并受版权法保护。版权所有©2022三菱化学高级材料。保留所有权利。