3.3 布局................................................................................................................................20 3.4 配置................................................................................................................................22 3.5 发动机外形........................................................................................................................24 3.6 水处理系统 (WHS).........................................................................................................................26 3.6.1 WHS 2 - HS 燃料.............................................................................................................26 3.6.2 WHS 3 - LS 燃料.............................................................................................................30
第 6 章 场发射 6.1 简介 电子束在许多应用和基础研究工具中起着核心作用。例如,电子发射用于阴极射线管、X 射线管、扫描电子显微镜和透射电子显微镜。在许多此类应用中,希望获得高密度的窄电子束,且每束的能量分布紧密。所谓的电子枪广泛用于此目的,它利用热阴极的热电子发射来操作。然而,由于发射电子的热展宽,实现具有窄能量分布的电子束很困难。因此,冷阴极的场发射备受关注,但需要大的电场导致尖端表面的原子迁移,因此难以实现长时间稳定运行。碳纳米管可能为这些问题提供解决方案。事实上,碳纳米管在冷场发射方面具有许多优势:与金属和金刚石尖端相比,纳米管尖端的惰性和稳定性可以长时间运行;冷场发射的阈值电压低;工作温度低;响应时间快、功耗低、体积小。本章后面将讨论,利用纳米管优异场发射特性的原型设备已经得到展示。这些设备包括 X 射线管 [Sug01]、扫描 X 射线源 [Zha05]、平板显示器 [Cho99b] 和灯 [Cro04]。在详细介绍场发射之前,我们先介绍一下早期的实验工作,这些工作确立了碳纳米管在场发射方面的前景 [Hee95]。图 6.1 显示了测量碳纳米管薄膜场发射的实验装置。其中,碳纳米管薄膜(纳米管垂直于基底)用作电子发射器。铜网格位于纳米管薄膜上方 20 微米处,由云母片隔开。在铜网格和纳米管薄膜之间施加电压会产生一束电子,该电子束穿过铜网格,并在距离铜网格 1 厘米的电极处被检测到。 (需要注意的是,这些实验是在高真空条件下进行的,场发射装置位于真空室中,残余压力为 10 -6 托。)图 6.1 显示了这种装置的电流与电压曲线,表明正向偏置方向的电流大幅增加(发射类似于二极管:对于负电压,电流非常小)。为了验证光束确实由电子组成,光束在磁场中偏转,偏转对应于具有自由电子质量的粒子的偏转。该图的插图显示了 ( ) 2 log / IV vs 1 V − 的图,即所谓的 Fowler-Nordheim 图(更多信息请参见
1 Universit´e Lyon, Ecole Centrale de Lyon, CNRS, INSA Lyon, Universit´e Claude Bernard Lyon 1, CPE Lyon, CNRS, INL, UMR5270, 69130 Ecully, France 2 Applied Physics Department, Hebrew University of Jerusalem, Israel 3 Laboratoire de Physique de l ' École normale sup´erieure, ENS,Univers'e PSL,CNRS,Sorbonne Universit´e,Universit'e Paris,F-75005 Paris,法国4号,4物理学和应用程序,Nanyang Technological Sciences,Nanyang Technological University,Nanyang Technological University,新加坡637371,新加坡5 6小维量子物理学的国家主要实验室和北京北京大学的物理学系,中华民国7北京量子信息科学学院,北京100193,中国人民共和国8 Institut Universitut Universitut Universiture Universitaire de France(IUF)
‒ 储能混合动力。主动力装置与车载储能相结合(例如氢燃料电池和电池) ‒ 双模式。由路边基础设施和车载发电提供电力(例如 OCS 电力和柴油、OCS 电力和氢燃料电池) ‒ 氢气 (H 2 ) 和电池能够显著降低能耗,同时实现零排放目标。 ‒ 氢气和双模式功能能够利用现有的 OCS 基础设施。
生物质可以帮助许多领域实现气候目标。在发电中,它可以补充可变的可再生能源,或者,如果与碳捕获和存储(CC)相结合,也提供了负emisions。本文通过关注平衡可变的可再生能源与生物质的成本偏执,并提供有关接受这些技术的指示,从而增加了现有文献。动态优化模型用于分析生物量在欧洲电力系统中的作用,以期为2050年不同的排放目标。将结果与有关生物量技术的投资优先数据以及风能和太阳能的调查数据进行了比较。如果允许使用CCS的生物能源,则观察到更集中使用的生物质的发射目标的制剂极大地影响了生物量的成本效益。这表明欧洲范围内的排放目标可能比单独的国家目标更具成本优势。政府和非政府参与者往往对投资生物质技术往往是负面的,尽管如果与CC结合使用,则差异更大,这表明实施可能挑战。在所有国家,他们对风能和太阳能的态度都更加积极,支持了欧洲电力系统中可变新建份额越来越份额的现有趋势的延续。©2020作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。