CIPL 对欧盟委员会关于《人工智能法案》草案的咨询的回应 CIPL 1 欢迎就欧盟委员会关于《欧洲人工智能法案》2(“AI 法案”或“法案”)的提案进行咨询,以将其纳入欧盟立法程序。CIPL 很高兴看到《人工智能法案》采纳了 CIPL 关于采用基于风险的方法监管欧盟人工智能的文件中提出的几项建议。3 这些建议旨在培养对人工智能的信任,而不会妨碍其负责任的发展。特别是,CIPL 欢迎该法案基于风险的方法,该方法将适用于高风险的人工智能用例,而不会监管人工智能技术本身或整个行业。CIPL 还欢迎拟议使用统一标准和行业自我评估产品符合性,因为这些机制已被证明能够成功推动创新并在欧盟市场开发安全可信的技术。CIPL 还欢迎旨在支持创新的措施,特别是通过为监管沙盒提供法定基础。最后,CIPL 很高兴看到《人工智能法案》中概述的一些要求与一些现有的行业惯例相一致,这些惯例为确保负责任地开发和使用人工智能设定了高标准。4 然而,CIPL 遗憾的是,《人工智能法案》没有充分考虑到一些必要条件,例如提供基于结果的规则;明确允许组织根据人工智能系统的风险和收益来调整对要求的遵守情况;奖励和鼓励负责任的人工智能实践;利用监管沙盒的经验教训;并澄清《人工智能法案》的监督和执行条款也应基于风险。CIPL 重申,要使《人工智能法案》有效地保护基本权利,同时也为欧盟创新的新时代奠定基础,它需要足够灵活以适应未来的技术。此外,该法案不能过于严格,以免抑制包括公共卫生或环境在内的一系列行业和部门对人工智能的宝贵和有益的创新和使用。最后,《人工智能法案》将受益于有针对性的调整,以更好地明确人工智能提供者、部署者和用户的责任平衡,特别是对于通用人工智能和开源人工智能模型。
联合新闻稿 新加坡,2021 年 6 月 8 日 NTU、NP 和 NHCS 科学家发明的新型人工智能工具可以加快心血管疾病的诊断 新加坡南洋理工大学 (NTU Singapore)、新加坡义安理工学院 (NP) 和新加坡国家心脏中心 (NHCS) 的一组研究人员发明了一种可以加快心血管疾病诊断的工具。在人工智能 (AI) 的推动下,他们的创新利用心电图 (ECG) 来诊断冠状动脉疾病、心肌梗死和充血性心力衰竭,准确率超过 98.5%。联合开发诊断工具非常及时,因为新加坡过去三年来因心血管疾病导致的死亡人数有所增加。据新加坡心脏基金会称,2019 年新加坡所有死亡人数中有 29.3%(几乎占新加坡死亡人数的三分之一)是心脏病或中风造成的。科学家们希望他们的创新能够支持临床环境中心血管疾病的诊断,特别是在医生进行初步心电图检查时,最终加快治疗进程。研究人员使用一种名为 Gabor-卷积神经网络 (Gabor-CNN) 的人工智能机器学习算法设计了诊断工具,该算法模仿人脑的结构和功能,使计算机能够像人类一样从过去的经验中学习。他们使用该算法,通过输入反映心血管疾病的心电图信号示例来训练他们的工具识别患者心电图中的模式。这项研究的共同作者、NHCS 心脏病学系高级顾问临床副教授 Tan Ru San 表示:“我们对一小组初步研究对象进行的研究表明,在使用常规心电图对一些常见心血管疾病进行分类的准确性方面取得了令人鼓舞的结果。虽然确认特定疾病仍需要额外的测试,但我们的诊断工具将
本出版物仅包含一般信息,而德勤(Deloitte)并非通过此出版物渲染会计,商业,财务,投资,法律,税收或其他专业建议或服务。本出版物不能替代此类专业建议或服务,也不应将其用作任何可能影响您业务的决定或行动的基础。在做出任何决定或采取任何可能影响您业务的行动之前,您应咨询合格的专业顾问。Deloitte对依赖本出版物的任何人遭受的任何损失概不负责。
留任访问 – 问答/笔记 • 介绍之后,一个很好的破冰方法是谈论公司在其网站“最新消息”部分列出的重大公告或成功 • 重要的是不要像在面试中一样通过问每个问题来“介绍”公司。理想的情况是进行对话并尽可能多地提出问题和数据请求
自我测试是从铃铛测试结果认证设备的一种方法。尽管已知噪声耐受性自我测试的示例,但尚不清楚如何有效地处理有限数量的实验试验,以证明设备的平均质量而不假设每次运行的行为相同。因此,存在有限统计数据的自我测试结果受到限制,以确保仅在所有经验试验之一中进行设备的适当工作,从而限制其实践适用性。我们在这里得出了一种通过自我测试来证明的方法,即,在每次运行中,副本平均产生的状态平均在靠近钟状态下,而没有假设。因此该方法不含I.I.D。(独立和分布)假设。将此新分析应用于最近无漏洞的铃铛实验中的数据,我们将在398米以上成功分布,平均意义在99%的承认水平下平均效率≥55.50%。是基于无检测和局部漏洞的铃铛测试,我们的技术显然是与设备无关的,也就是说,它不依赖于对设备的信任或对设备的工作方式的了解。这可以保证我们的链接可以集成到量子网络中,以通过安全保证独立于实际进度的细节来驱动长距离量子通信。
搬迁沙田污水处理厂往岩洞的实时大数据人工智能环境影响评估 (AIEIA) 执行摘要 搬迁沙田污水处理厂往岩洞(本项目)的环境影响评估中,位于沙田马场和周边河道的彭福公园鹭鸟林被列为环境指标之一。目前,香港对鸟类生态栖息地的监测主要以人为观察为主,而人为观察的时间间隔有限。由于繁殖季节环境变化微妙,人为不易分辨鸟类行为的细微变化。渠务署藉此机会与香港科技大学合作,通过在项目下对彭福公园鹭鸟林进行先导观察,探索将最先进的绿色人工智能 (AI) 技术融入环境监测。观察是明智行动的第一步。完整的阵列数据收集系统 (ADCS) 和实时数据提取管道架构经过全面设计,可实现模块化,并可成功部署在各种结构中,确保在所有环境中可靠运行。ADCS 具有多种优势,可满足户外环境长期监测的需求:(i) 自动连续录制;(ii) 高分辨率视频;(iii) 高帧率视频;(iv) 巨大的本地数据存储;(v) 保护恶劣环境(例如极端天气条件)。采用一种新的视频压缩标准高效视频编码 (H.265) 来处理、存储和传输高分辨率视频,同时保持视频质量。在户外环境中实现数据采集自动化之后,实施了 AI 算法,以从长达数月的数据中检测鸟类。本研究重点是检测大白鹭和小白鹭,即研究地点的主要鸟类。AI 算法开发的主要挑战是缺乏香港鸟类的标记数据集。为了解决这个问题,我们利用 3D 建模制作了大白鹭和小白鹭的合成鸟类数据集。在虚拟图像的开发过程中,我们应用了姿势和身体大小等显著特征的大量变化,这反过来又迫使模型专注于专家用来区分鸟类物种的细粒度鸟类特征,例如颈部和头部。经过训练的 AI 模型能够在不同背景下以高预测分数区分和定位鸟类物种,平均准确率达到 87.65%。我们的人工智能 ADCS 解决方案比传统的人工观察具有多种潜在优势,能够在不同的天气条件下为不同物种的鸟类计数、行为研究、空间偏好以及种间和种内相互作用提供密集的表面。这项研究的结果和发现有利于未来规划环境监测工作以及项目下的工作阶段,以尽量减少对彭福公园鹭鸟林的潜在环境影响。
摘要目的——本文旨在介绍 TIVANO 国家资助项目框架内取得的主要成果,该项目可能分步预测混合/电动中空长航时 (MALE) 无人机 (UAV) 执行持续情报监视侦察 (ISR) 军事行动所需的支持技术的演变和设计。设计/方法/方法——分析混合推进系统的不同架构,指出它们的运行模式,以选择更适合参考飞机的架构。进一步分析所选架构及其电力装置分支,重点分析电气系统架构和所选电机。最后在飞机层面对混合动力和标准推进进行了比较。结果——使用混合动力推进可以减轻飞机总重量并提高安全水平。然而,这个结果会导致爬升阶段性能下降。实际意义——本研究可作为类似研究的参考,并详细描述了推进操作模式、电源管理、电气系统和机器架构。原创性/价值——本研究提出了一种新型混合动力推进应用,重点关注用于 ISR 任务的三吨级 MALE 无人机。它提供了推进系统的新操作模式和详细的 ele
人工智能取得了显著的成功,在某些任务上甚至在医学等复杂领域都比人类专家表现更好。另一方面,人类擅长多模态思维,可以几乎立即将新输入嵌入到由经验塑造的概念知识空间中。在许多领域,目标是建立能够自我解释的系统,参与交互式假设问题。这类问题被称为反事实问题,在可解释人工智能 (xAI) 这一新兴领域中变得越来越重要。我们的核心假设是,使用概念知识作为现实的指导模型将有助于训练更可解释、更稳健、偏差更小的机器学习模型,理想情况下能够从更少的数据中学习。医学领域的一个重要方面是各种模态对一个结果有贡献。我们的主要问题是“如何使用知识库作为开发新解释界面技术的初始连接器来构建多模态特征表示空间(涵盖图像、文本、基因组数据)?”。在本文中,我们主张使用图神经网络作为一种选择方法,实现多模态因果关系的信息融合(因果关系——不要与因果关系混淆——是人类专家对因果关系的解释达到特定理解水平的可衡量程度)。本文旨在激励国际 xAI 社区进一步研究多模态嵌入和跨
Agresearch拥有羊毛与消费者相关的属性以及创建它的农场系统的世界领先专业知识。我们准备好提供支持下一个Lanaco,keraplast或Woolchemy所需的可靠证据和创新知识,以实现其目标。本文档提供了对Agresearch在整个价值链中的能力的见解,以支持我们的羊毛行业,并开发带来成功和可持续未来的知识和产品。