秘密密钥603DEB1015CA71BE2B73AEF0857D7781 1F352C073B6108D72D9810A30914DFF4 CIPHER CIPHER DATA 146F2A291CB4799989090909A77836A60E3BC0 092A4AF9BA6704D751A38FE1B60F30DA
量子同态加密允许服务器直接对加密数据进行计算,它是构建更复杂的量子密码协议的基本基元。要实现这样的构造,量子同态加密必须满足两个隐私属性:数据隐私(确保输入数据对服务器是私密的)和电路隐私(确保计算后的密文不会泄露有关用于执行计算的电路的任何其他信息,除了计算本身的输出)。虽然电路隐私在经典密码学中得到了充分研究,并且许多同态加密方案都可以配备它,但它的量子类似物却很少受到关注。在这里,我们为具有信息论安全性的量子同态加密建立了电路隐私的定义。此外,我们将量子无意识传输简化为量子同态加密。通过使用这种简化,我们的工作揭示了广泛的量子同态加密协议家族中的电路隐私、数据隐私和正确性之间的基本权衡,其中包括仅允许计算 Cliūford 电路的方案。
在当今的数字社会中,密码学已经成为现代安全性,交易,互动和敏感数据存储的基石。加密密钥 - 制成数百或数千个字符的随机字符串 - 从卡付款到云服务的所有内容。加密过程的生命周期管理在这方面至关重要,并且在正确完成时,为组织提供了一种优雅且高度可靠的方法,可以保护数据,验证用户并创建不可撤销的数字签名。
最近,已经开发了许多基于混合DNA和混乱的图像加密算法。这些算法中的大多数利用混沌系统在分叉图中表现出耗散动力和周期性的窗口/图案以及参数空间附近共存的吸引子。因此,这种算法产生了几个弱键,从而使它们容易受到各种混乱的攻击。在本文中,我们提出了一种新型的保守性混沌标准MAP驱动的动态DNA编码(编码,加法,减法和解码),以进行图像加密。是第一个杂种DNA和基于保守的混乱图像加密算法,具有有效的有限键空间。所提出的图像加密算法是一种动态的DNA编码算法,即用于对每个像素不同规则进行编码,加法/减法,解码等的加密规则。是根据借助保守性混沌标准图生成的伪界序列随机选择的。我们提出了一种新型的方法,可以通过保守的混沌标准图生成伪随机序列,并在最严格的伪随机测试套件(NIST测试套件)中严格测试它们,然后在建议的图像加密算法中使用它们。我们的图像加密算法结合了独特的进纸和反馈机制,以生成和修改动态的一次性像素,这些像素被进一步用于加密普通图像的每个像素,从而在明文上和ciphertext上引起了所需的敏感性。在该算法中使用的所有控制伪序序列都是为参数的不同值(秘密键的一部分)而产生的,并通过混乱映射的迭代(在生成过程中)具有相互依赖性(因此在生成过程中),因此也具有极高的密钥灵敏度。绩效和安全分析已通过直方图分析,相关分析,信息熵分析,基于DNA序列的分析,感知质量分析,关键灵敏度分析,纯文本灵敏度分析,经典攻击分析等进行了广泛的执行。<结果是有希望的,并证明了该算法对各种常见的隐式分析攻击的鲁棒性。
首先,升级到新的安全标准需要付出高昂的成本。升级旧系统对企业来说成本高昂。这通常是由于现有协议不兼容、公司对 IT 系统中需要升级的所有易受攻击节点的库存不足(当涉及第三方供应商时,升级难度会更大),以及为了管理成本而需要较长时间进行这些更改。当我们考虑到管理层可能存在的阻力时,这种情况会进一步加剧,管理层可能会质疑是否有必要用现有安全系统来换取尚未完全实现的风险。
区块链作为新兴的下一代信息技术,在信息透明、交易安全等方面具有独特优势,受到了社会及金融领域的高度关注。然而量子计算的快速发展和量子霸权的即将实现,对基于传统密码学的传统区块链的优势产生了重大冲击。本文提出一种基于非对称量子加密和权益投票共识算法的区块链算法。该算法将基于节点行为和Borda计数的委托权益证明(DPoSB)的共识算法与基于完全翻转置换(QSCDff)问题的量子态计算区分性的量子数字签名技术相结合,使用DPoSB通过投票生成区块,而量子签名则应用量子单向函数来保证交易的安全性。分析表明,该组合比现有的其他抗量子区块链具有更好的保护效果,可以有效抵御量子计算对区块链技术的威胁,为保障区块链的安全提供新的平台。
摘要:随着第四代(4G)和第五代(5G)等通信技术的革命性进步,过去几十年来多媒体数据共享的使用急剧增加。研究人员提出了许多基于经典随机游走和混沌理论的图像加密算法,以便以安全的方式共享图像。本文提出用量子游走代替经典随机游走来实现高图像安全性。经典随机游走由于状态间的随机转换而表现出随机性,而量子游走则更具随机性,并通过波函数的叠加和干涉实现随机性。使用相关系数、熵、直方图、时间复杂度、像素变化率和统一平均强度等广泛安全指标对所提出的图像加密方案进行了评估。所有实验结果均验证了所提出的方案,并得出结论:所提出的方案具有高度安全性、轻量级和计算效率。在所提出的方案中,相关系数、熵、均方误差(MSE)、像素数变化率(NPCR)、统一平均变化强度(UACI)和对比度的值分别为0.0069、7.9970、40.39、99.60%、33.47和10.4542。
随着通过不安全通信渠道传输的数据量不断增加,大数据安全已成为网络安全领域的重要问题之一。为了解决这些问题并确保数据安全,需要一个强大的隐私保护密码系统。这种解决方案依赖于混沌加密算法,而不是标准加密方法,这些算法具有多级加密级别,包括高速、高安全性、低计算开销和程序能力等特点。在本文中,提出了一种使用线性反馈移位寄存器 (LFSR) 和基于混沌的量子混沌映射的安全图像加密方案。该方案的重点主要取决于来自算法输入的密钥。威胁形势、统计测试分析以及与其他方案的关键比较表明,所提出的算法非常安全,并且可以抵抗各种不同的攻击,例如差分攻击和统计攻击。与现有加密算法相比,所提出的方法具有足够高的灵敏度和安全性。几个安全参数验证了所提工作的安全性,例如相邻像素之间的相关系数分析、熵、像素变化率 (NPCR)、统一平均变化强度 (UACI)、均方误差 (MSE)、强力、密钥敏感度和峰值信噪比 (PSNR) 分析。所提技术生成的密码的随机性也通过了 NIST-800-22。NIST 的结果表明,密码具有高度随机性,不会产生任何类型的周期性或模式。
摘要。量子密钥分布(QKD)是一种基于量子力学基本原理,例如海森伯格的不确定性原理和无键值理论。QKD的用法警告了任何攻击尝试的合法交流方,这是最有趣的安全参数。因此,QKD提供了无条件的安全通信方法,并支持强大的加密方案。经典通信与QKD之间的组合创建了一种称为Semi Quantum键分布SQKD的新技术。不幸的是,SQKD提高了方案的复杂性,并且需要两个步骤来进行密码,争夺和加密。在本文中,基于QKD提出了增强图像加密算法,该算法消除了SQKD的大多数缺点。所提出的算法比其他加密方案更简单,因为它仅根据生成的秘密键的功率和随机性来利用一个加密步骤,这减少了破裂的机会。通过数值模拟验证了所提出的算法的正确性和效率。
