CRISPR 介导的原代人类淋巴细胞基因组编辑通常通过电穿孔进行,这可能具有细胞毒性、繁琐且成本高昂。本文我们展示了通过递送与筛选确定的两亲肽混合的 CRISPR 核糖核蛋白可以大幅提高编辑后的原代人类淋巴细胞的产量。我们通过递送 Cas9 或 Cas12a 核糖核蛋白或腺嘌呤碱基编辑器敲除 T 细胞、B 细胞和自然杀伤细胞中的基因来评估这种简单递送方法的性能。我们还展示了肽介导的核糖核蛋白递送与腺相关病毒介导的同源定向修复模板配对可以在 T 细胞受体 α 恒定位点引入嵌合抗原受体基因,并且工程细胞在小鼠中表现出抗肿瘤效力。该方法干扰最小,不需要专用硬件,并且与通过顺序递送的多重编辑兼容,从而最大限度地降低了基因毒性的风险。肽介导的核糖核蛋白细胞内递送可能有助于制造工程化 T 细胞。
carboxamid e carboxylate carboxylic acid ether halide hydrazine hydroxylamine imine iminomethyl ketone nitrile quinones sulfide sulfonamide sulfone sulfoxide urea CYP3A4 4.673 -1.657 1.259 -0.5551 -2.915 5.568 1.027 9.7 0.22 3.645 1.812 -8.266 -3.206 -0.72 4.486 -2.023 3.258 -1.178 -4.696 -1.171 0.2793 2.299 2.656 2.656 -2.057 -2.223 4.487 CYYP3A4 MBI COPT 1.056 1.124 -3.735 3.305 2.279 -0.2916 -0.5531 1.76 -1.762 -1.122 0.0924 -1.604 -0.185 0.7485 -0.8378 -1.71 -2.679 CYP2C9 -1.714 -1.019 0.5386 -1.888 -0.4591 -4.956 0.6673 -1.543 -5.244 -1.749 -2.953 -2.057 1.877 2.274 -3.064 0.9572 1.215 -0.9967 -2.176 1.688 -1.019 -0.5739 5.121 5.445 -1.431 -1.756 CYP2C19 -2.273 -1.076 2.023 -1.003 0.6657 -0.6112 0.8963 -7.442 -2.295 -0.02369 -3.314 0.04706 -1.89 -2.443 0.2077 0.062 -1.207 -3.293 -0.1096 1.859 4.388 -0.701 -2.874 -2.715 -3.454 CYP2D6 5.566 -1.377 -3.444 -3.224 -2.803 10.12 -0.9736 -1.175 -16.24 -7.884 -2.954 -11.59 -0.9727 -2.91 -4.197 -1.804 0.6502 -3.126 -2.019 -0.9496 -1.377 3.191 -4.559 -3.354 -1.54 1.906
抽象的抗生素消耗及其滥用量在历史上并反复指出是抗生素耐药性出现和传播的主要驱动力。然而,有几个例子表明,尽管使用抗生素的使用大量降低,并且其他因素仍处于危险之中,但耐药性可能会持续存在。在这里,我们研究了氨基糖苷耐药性的时间,空间和生态分布模式,通过筛选超过160,000多个公开可用的基因组,用于编码氨基糖苷 - 修饰酶(AME基因)的27个基因簇(AME基因)。我们发现AME基因表现出非常普遍的模式:约25%的测序细菌携带AME基因。这些细菌是从所有大陆(南极)和陆地生物群落中的所有大陆进行测序,属于大量的门。通过关注1997年至2018年之间的欧洲国家,我们表明,氨基糖苷的消费对携带AME-Gene的细菌的流行率几乎没有影响,而在生物群体中观察到大多数患病率的变化。我们进一步分析了跨生物群落的抵抗组成分的相似之处:土壤,野生动植物和人类样品似乎是了解不同生态环境之间AME基因的交流的核心。在一起,这些结果支持这样的观念,即基于减少抗生素使用的介入策略应通过对交换的更强大的控制,尤其是生态系统之间的更强控制。
作用于 RNA 的腺苷脱氨酶 (ADAR) 可以重新用于实现位点特异性的 A-to-I RNA 编辑,方法是通过 ADAR 招募向导 RNA (adRNA) 将它们招募到感兴趣的靶标上。在本章中,我们详细介绍了通过两种正交策略实现此目的的实验方法:一是通过招募内源性 ADAR(即已经在细胞中天然表达的 ADAR);二是通过招募外源性 ADAR(即将 ADAR 递送到细胞中)。对于前者,我们描述了使用环状 adRNA 将内源性 ADAR 招募到所需的 mRNA 靶标上。这可在体外和体内实现稳健、持久且高度转录特异性的编辑。对于后者,我们描述了使用 split-ADAR2 系统,该系统允许过度表达 ADAR2 变体,可用于以高特异性编辑腺苷,包括难以编辑非优选基序中的腺苷,例如 5′ 鸟苷两侧的腺苷。我们预计所述方法应促进研究和生物技术环境中的 RNA 编辑应用。
crisprs和CAS蛋白提供具有RNA引导的适应性免疫的微生物,并为程序型基因组操纵提供了跨形成技术机会1,2。cas9及相关酶现在被广泛用于编辑或调节培养细胞和原代细胞,动物和植物的基因组,从而极大地加速了农业和合成生物学的基本研究和增强突破的速度。此外,基因组编辑还具有了解人类遗传学和治愈遗传疾病的潜力。CRISPR – CAS系统的生物学和技术能力促进了努力,以了解负责CRISPR – CAS功能的分子,包括针对性的DNA结合,切割,编辑和整合。CRISPR-CAS系统在结构和机械上是多样的。这些系统通常由CRISPR阵列,适应模块和CRISPR RNA(CRRNA)生物发生和DNA/RNA解关模块组成(在参考文献3,4)中进行了综述(图1,2)。为提供适应性和可遗传的免疫力,CRISPR阵列将移动遗传元件(MGE)的遗传信息存储为“间隔者”序列(通常大小约为25–50 bp,尽管大小可以在〜17至〜172 bp范围内5,6插入短的PALINDROMIC重复段(审查)(在参考中审查。7)。CAS1 – CAS2适应机械在细菌细胞中将病毒或质粒DNA(质粒DNA)的段(质粒DNA)组成,并将其整合到CRISPR阵列中(图1)。在靶向DNA靶向CRISPR-CAS系统中,原始的探针的选择取决于存在3-5 bp长的原始探针邻接基序(PAM),该基序(PAM)未集成到CRISPR阵列中,并用于
摘要 十-十一易位 (TET) 家族酶对 DNA 的氧化对于表观遗传重编程至关重要。5-甲基胞嘧啶 (5mC) 转化为 5-羟甲基胞嘧啶 (5hmC) 会通过包括染色质结构变化在内的机制启动发育和细胞类型特异性转录程序。在这里,我们表明转录基因中 5hmC 的存在会促进新生 RNA 与模板 DNA 链的退火,从而形成 R 环。在没有基因表达变化的情况下,TET 酶的消耗会减少整体 R 环,而 CRISPR 介导的 TET 与活性基因的结合会促进 R 环的形成。5hmC 和 R 环的全基因组分布在小鼠和人类干细胞中呈正相关,并且在一半的活性基因中重叠。此外,R 环分解会导致参与干细胞增殖过程中关键事件的一组基因的差异表达。总之,我们的数据表明,通过 TET 活性进行的表观遗传重编程促进了共转录 R 环的形成,揭示了基因表达调控的新机制。
通过在体内大规模地同时进行超突变和选择,微生物宿主中的酶和其他蛋白质的连续定向进化能够超越经典定向进化,并且只需极少的手动输入。如果目标酶的活性可以与宿主细胞的生长相结合,那么只需选择生长就可以提高活性。与所有定向进化一样,连续版本不需要事先了解目标的机制。因此,连续定向进化是修改植物或非植物酶以用于植物代谢研究和工程的有效方法。在这里,我们首先描述用于连续定向进化的酵母(酿酒酵母)OrthoRep 系统的基本特征,并将其与其他系统简要比较。然后,我们将逐步介绍使用 OrthoRep 进化主要代谢酶的三种方式,并以 THI4 噻唑合酶为例并说明获得的突变结果。最后,我们概述了 OrthoRep 的应用,这些应用满足了日益增长的需求:(i)改变植物酶的特性以便返回植物;(ii)改造(“植物化”)原核生物(尤其是外来原核生物)的酶,使其在温和的类植物条件下发挥良好作用。
完整作者列表:Kumar, Gaurav;德里大学 - 南校区,生物化学 Saini, Manisha;德里大学 - 南校区,生物化学 Kundu, Suman;德里大学 - 南校区,生物化学
靶向溶栓的想法可以追溯到近三十年前。Dewerchin 及其同事设计了一种由抗血小板抗体和单链尿激酶 (sc-uPA) 组成的生物共轭物,以在啮齿动物模型中证明概念(就血凝块溶解和出血时间而言)。5 20 世纪 90 年代末,Yang 及其同事开发了一种由电荷修饰的抗纤维蛋白抗体和 tPA 组成的两部分系统,它们通过静电相互作用连接在一起,这种相互作用可以通过鱼精蛋白(一种碱性肽)和临床肝素解毒剂来消除。6,7 后来,设计了一种由治疗剂量的肝素触发的靶向血小板的静电纳米复合物 8 ,使用来自纤维蛋白原 γ 链的 14 聚体肽序列,该序列对活化的血小板表面(糖蛋白 IIb/IIIa)具有高亲和力。 8,9 tPA 的前体药物类型中还加入了内源性触发剂,该触发剂可通过血栓附近的凝血酶梯度激活。10 此外,在过去十年中,人们对寻找一种结合靶向和释放机制的颗粒型纳米载体以递送溶栓剂的兴趣日益浓厚。Vyas 和同事设计了一种脂质体载体,脂质体表面有 RGD 肽,用于递送由血凝块剪切力触发的链激酶。11,12 超声触发纳米系统似乎很有前景:阳离子化明胶/tPA 复合物 13,14 和微泡。15 最后但并非最不重要的是,超顺磁性纳米颗粒也用于靶向递送溶栓剂。16