地产战略支持大学战略计划中关键目标的实现,并提供 2040 年的路线图。校园应反映大学的价值观。该战略旨在开发和维护一个有吸引力、有凝聚力、可持续的环境,支持两个优秀的校园,提供结合技术、人员、地点和教学法的有效环境。该战略将涵盖 2020-2040 年期间,分为三个时期,两个五年期,一个十年期。它将采用全面综合的方法进行资本投资、维护和资产利用。所有投资都应经过测试,以确保它们为校园用户带来切实的改善。大学的建筑、建筑和土木工程学院 (ABCE) 将用于利用专业知识和研究来提供支持和挑战。ABCE 院长强调了投资美学的重要性,并提议在校园内投资一座标志性建筑,这将成为吸引游客的灵感来源。该庄园将被 ABCE 用作“生活实验室”,ABCE 将在建筑物中覆盖和嵌入传感器,以提供信息和数据,使该部门成为
摘要 — 本文研究了一种无人机 (UAV) 辅助移动边缘计算 (MEC) 系统,其中 UAV 为地面 MEC 系统提供补充计算资源。UAV 通过创建相应的虚拟机来处理从移动用户 (MU) 接收的计算任务。由于 MEC 系统中 UAV 的共享 I/O 资源有限,每个 MU 都会在决策时期内竞争安排本地和远程任务计算,旨在最大化预期的长期计算性能。MU 之间的非合作交互被建模为随机博弈,其中 MU 的决策取决于全局状态统计数据,并且所有 MU 的任务调度策略是耦合的。为了近似纳什均衡解,我们提出了一种基于长短期记忆和深度强化学习 (DRL) 技术的主动方案。建立 MEC 系统的数字孪生,以离线训练主动 DRL 方案。使用所提出的方案,每个 MU 仅使用自己的信息进行任务调度决策。数值实验表明,该方案在决策时期内每个 MU 的平均效用方面具有显着的性能提升。
可以通过在训练过程中逐步增加图像大小来进一步加速我们的培训。许多以前的作品,例如渐进式调整(Howard,2018),FixRes(Touvron等人,2019年)和混合匹配(Hoffer等人,2019年),在培训中使用了较小的图像尺寸;但是,它们通常对所有图像尺寸保持相同的正则化,从而导致准确性下降。我们认为,对不同图像大小保持相同的规则ization并不理想:对于同一网络,小图像大小会导致小网络小组,因此需要弱的正则化;反之亦然,较大的图像大小需要更强的正则化来对抗过度拟合(请参阅第4.1节)。基于这种见解,我们提出了一种改进的渐进学习方法:在早期的培训时期,我们以较小的图像大小和较弱的正则化(例如,辍学和数据增强)训练网络,然后我们逐渐增加图像大小并增加更强大的调节化。建立在渐进式调整的基础上(Howard,2018),但是通过动态调整正则化,我们的方法可以加快训练而不会导致准确性下降。
近年来,人们对神经科学和人机交互 (HCI) 中的多模态实验越来越感兴趣,这些实验通常涉及闭环交互系统。许多新兴范式在扩展现实 (XR) 环境中找到了新的根源,包括虚拟现实 (VR) 和增强现实 (AR)。此类实验越来越多地融合多种模态并结合不同的生理测量。例如,一个传感器可以生成事件以从其他传感器中提取有意义的数据间隔,例如注视相关电位 (FRP) 研究,其中 EEG 时期锁定到眼动仪的视觉注视(Nikolaev 等人,2016 年)。还可以组合多种生理信号以增强其预测能力,以用于从情绪识别(He 等人,2020 年;Koelstra 等人,2011 年)到通过感觉运动节律进行运动驱动(Sollfrank 等人,2016 年)等应用。此外,多模态范式可以促进探索不同的生理系统如何相互作用;例如,瞳孔扩张可作为通过功能性磁共振成像(fMRI;Murphy 等人,2014)测量的蓝斑活动的替代。
本文提出了一个深度学习模型,挑战了公司破产这一金融领域的已知知识。具体来说,我们构建了一个用于预测公司破产的多层感知器 (MLP) 模型,并对其进行了分析,以直观地显示哪些输入参数对模型的准确性最重要。该模型使用大约 55,000 行数据、数据清理和超参数优化,在 120 个时期和 30 次试验后实现了 82.8% 的平均准确率和 0.0678% 的标准差,这是一个出色的结果。该模型优于两个进行比较的支持向量机 (SVM) 模型,并表现出良好的泛化能力。然而,非线性 SVM 模型产生了 20.48% 的假阳性,准确率为 71.96%,而 MLP 模型产生了 25.1% 的假阳性。因此,如果减少假阳性的数量更重要,那么尽管准确率较低,但 SVM 模型可能是更可取的。分析输入参数后发现,员工人数、离职组和股权比例是对破产预测影响最大的输入参数。由此得出结论,这些参数可能是分析一家公司是否会破产时最重要的因素。
摘要 — 可靠的婴儿哭声识别在婴儿护理和监护中起着至关重要的作用,但现实环境由于背景噪音对系统准确性构成了挑战。本研究提出了一种用于在不同噪音条件下识别婴儿哭声的新型 CNN 架构,该架构具有三个卷积层、一个最大池化层和 0.5 丢失集,并将其性能与标准 RNN 模型进行了比较。这些模型以 64 的批大小训练了 100 个时期,并在干净和嘈杂的环境中进行了评估。为了模拟真实场景,将录音转换成音频信号并受到不同程度的背景噪音的影响,特别是在不同的信噪比 (SNR) 下。结果表明,两种模型在无噪音条件下都实现了高精度 (>89%)。然而,在 10dB 噪音下,提出的 CNN 比 RNN 保持了更高的精度 (93%) 和总体准确率 (91%),证明了其在婴儿哭声识别方面的卓越抗噪性。这种改进归功于 CNN 能够捕捉音频信号中的空间特征,这使其不易受到噪音干扰。这些发现有助于开发更可靠、更强大的婴儿哭声识别系统。
银行业务)依靠 GPS 的 PNT 来为交易添加时间戳并进行网络同步。受证券交易委员会监管的金融服务机构在某些应用中使用 GPS,但通常也会使用时钟套件来维护自己的内部时间“纪元”,以创建带时间戳的事件记录、光纤、微波链路等。虽然它们可能因此不太容易受到干扰,但涉及的巨额资金使它们成为恶意 PNT 干扰的更诱人目标。• 数字广播和陆地移动无线电 – GPS 的精确计时用于大大增加数字无线电和电视广播以及移动无线电网络中固定频谱的使用,而早期的模拟系统则无法做到这一点。例如,安全、急救人员、军队和其他人员使用的模拟形式的手持和移动无线电只能支持一个发射器同时在线,并且只能在一个频率上进行一次对话。用户必须小心地按下无线电键进行通话,并说“结束”以表示通话已完成,然后才能释放键并释放频率进行回复。数字系统利用 GPS 的精确时间信号将对话分成数据包,这样就可以在同一频率上同时进行多个对话。
方法:我们提出了一个开源基准测试框架,台式框架,以建立最佳的实践机器学习方法,以评估应用于FNIRS数据的模型,并使用用于脑部计算机界面(BCI)应用程序的五个开放式访问数据集。使用嵌套交叉验证的稳健方法,台式框架使研究人员能够优化模型并无偏见评估它们。该框架还使我们能够生产有用的指标和图,以详细介绍新模型的性能以进行比较。为了演示框架的实用性,我们提出了六个基线模型[线性判别分析(LDA),支持 - 矢量机(SVM),K-Neartivt邻居(KNN),人工神经网络(ANN),卷积神经网络(CNN)和长期记忆(LSTM)的(lSTM)的[分类性能的不同因素,包括:训练示例的数量和每个用于分类的FNIRS样本的时间窗口的大小。我们还提供了一个滑动窗口的结果,而不是简单的时期分类,并且通过个性化方法(在主题数据分类中)而不是广义方法(未见主题数据分类)。
抽象使用镜子足够定向,另一只手的运动与另一只手诱导了运动的液化。在这里,我们检验了以下假说:这种镜像现象可以由脑脑摄影(EEG)事件相关的dengronic/同步(ERD/ERS)的基础(EEG)中央alpha节奏(ERD/ERS)(约10 Hz)作为神经物理学的相互作用,以及在糖果中的神经物理学测量,以及在糖果群体之间的相互作用,并在糖果中的互动量。 执行。十八位健康的右手男性参与者在没有镜子(M-)条件下进行了标准听觉触发的单侧(右)或双侧手指运动。在镜子(M +)条件下,在镜子前面进行单侧右手指运动,以诱导同时左手手指运动的幻觉。EEG活性记录在64个头皮电极中,并使用与事件相关的EEG时期进行计算αERD。在M-条件下,在双侧运动中观察到双侧突出的中央αERD,而在单侧右运动中,左中央alpha ERD和右中央alpha ers均观察到。相反,M +条件显示出明显的双侧和广泛的alpha erd dur-
在现代,机器学习和人工智能系统在执行各种任务的能力方面成倍增长,但是在开发训练阶段和最终设备上的推理阶段的能源需求中。这引起了人们对它们对全球温室气体排放的影响的严重关注。期望ML的新时代停止解决这些环境问题是不现实的,因此,有必要探索提高这些ML模型以减少资源的效率的方法。本文探讨了此过程的一些潜在改进,即在资源受限的物联网设备上部署机器学习模型,减少训练这些模型所需的数据量,并最大程度地减少开发它们所需的神经元数量。对于研究的实际方面,我们将探索使用Edge Impulse在云上开发机器学习以在云上进行运动分类的最有效的方式,并在Thing thing thaty 52上部署了该模型,这是北欧半导体的小物联网设备。,我们将探讨减少所需训练数据的量,训练时期的数量,隐藏层和神经元的数量,尽管培训因素减少了,并且随着Thing the Things 52的限制资源,并讨论了遇到的各种问题和潜在的未来改进,以汇聚在可接受的模型上。