线性时间逻辑(LTL)目标的替代奖励通常用于LTL目标的计划问题。在广泛的替代奖励方法中,使用两个折现因素来确保预期收益近似于LTL目标的满意度。可以通过使用Bellman更新(例如增强学习)来估算预期的回报。但是,尚未明确讨论对贝尔曼方程的唯一性,并没有明确讨论两个折扣因素。我们证明了一个示例,即当将折扣因子之一设置为一个,如许多先前的作品中所允许的时,Bellman方程可能具有多个解决方案,从而导致对预期收益的评估不准确。然后,我们提出了一个条件,使钟手方程将预期的回报作为独特的解决方案,要求在拒绝底部连接的组件(BSCC)内的状态解决方案为0。我们证明这种情况是有足够的,可以证明具有折扣的州的解决方案可以与国家的解决方案分开而无需在这种情况下打折。关键字:马尔可夫链,极限确定性b - uchi automaton,可及性,b - uchi条件
Q学习算法(Watkins)给出了一种以模型自由方式计算最佳策略的更优雅的方式。表示q(x,u)采取行动u时状态x的最佳期望值,然后最佳地进行。是q(x,u)= r(x,u) +γx
用于差异方程求解,数据处理和机器学习的量子算法在所有已知的经典算法上都具有指数加速。但是,在有用的问题实例中获得这种潜在的加速也存在障碍。量子差方程求解的基本障碍是,输出有用的信息可能需要很困难的后处理,而量子数据处理和机器学习的基本障碍是,输入数据是一项单独的任务。在这项研究中,我们证明,当组合在一起时,这些困难互相解决。我们展示了量子差方程求解的输出如何作为量子数据处理和机器学习的输入,从而可以通过主组件,功率谱和小波分解来动态分析。为了说明这一点,我们考虑了马尔可夫在流行病学和社交网络上的连续时间。这些量子算法比现有的经典蒙特卡洛方法提供了指数优势。
1个学生,2个学生,3个学生1计算机科学与工程,1 Sreenidhi科学技术研究所,印度城市摘要:由于技术进步,机器学习和深度学习变得越来越重要。手写识别,机器人技术,人工智能以及更多的行业现在正在使用机器学习和深度学习方法。这样的系统需要数据培训,使我们的机器可以学习并做出必要的预测。在这项研究中,证明了具有可观精度为98%的手写方程求解器。它是使用卷积神经网络和某些图像处理技术对手写数字和数学符号进行了训练的。数字0到9的图像,plus和sinus符号(+),手写符号 *构成数据集。为了提取功能,我们将使用轮廓提取。在此项目中,我们使用卷积神经网络构建模型,并训练该模型以评估手工编写的方程式,我们使用数字和操作员手工编写的数据集。给出了手写方程的输入图像,将图像转换为灰色背景,为此,我们使用轮廓提取来获取特征。输出是通过评估方程式
从自然语言生成数学方程式需要准确理解数学表达式之间的关系。现有的方法大致可分为标记级和表达式级生成。前者将方程式视为数学语言,顺序生成数学标记。表达式级方法逐一生成每个表达式。然而,每个表达式代表一个求解步骤,这些步骤之间自然存在并行或依赖关系,而现有的顺序方法却忽略了这些关系。因此,我们将树结构融入表达式级生成中,提倡表达式树解码策略。为了生成以表达式为节点的树,我们采用逐层并行解码策略:在每一层并行解码多个独立表达式(叶节点),并逐层重复并行解码,以顺序生成这些依赖于其他表达式的父节点表达式。此外,采用二分匹配算法将每一层的多个预测与注释对齐。实验表明,我们的方法优于其他基线方法,特别是对于那些具有复杂结构的方程。
了解致密强子物质的行为是核物理学的一个核心目标,因为它决定着超新星和中子星等天体物理物体的性质和动力学。由于量子色动力学 (QCD) 的非微扰性质,人们对这些极端条件下的强子物质知之甚少。在这里,格点 QCD 计算用于计算热力学量和 QCD 状态方程,这些方程发生在具有受控系统不确定性的广泛同位旋化学势范围内。当化学势较小时,与手性微扰理论一致。与大化学势下的微扰 QCD 进行比较,可以估计超导相中的间隙,并且该量与微扰测定结果一致。由于同位旋化学势的配分函数 μ I 限制了重子化学势的配分函数 μ B ¼ 3 μ I = 2 ,这些计算还首次在很宽的重子密度范围内对对称核物质状态方程提供了严格的非微扰 QCD 界限。
用户意图。基于 SSVEP 与视觉刺激调制频率锁定这一知识,界面通常设置为在场景中具有多个目标,每个目标都标记有一个通过闪烁传递的唯一频率。目标可以是放置在物体上或附近的发光二极管 (LED),以表示潜在动作、物品或到达坐标 [4–7],也可以表示在计算机屏幕上,每个目标块代表 BMI 拼写器中的字符或用于控制计算机或其他设备的命令 [8–10]。为了从界面中呈现的所有目标中识别出用户的预期目标,解码算法会分析包含 SSVEP 的收集到的脑信号的频率成分,并根据主要频率特征做出决策。在典型的 SSVEP 设置中,诱发的 SSVEP 包含刺激频率 𝑓 ,以及该频率的谐波 2 𝑓、3 𝑓,... [1, 11]。传统基于 SSVEP 的 BMI 的局限性之一是目标数量受到 SSVEP 有限的响应范围 [1] 和谐波存在的限制,如果在界面中同时使用某个频率及其谐波,可能会导致错误分类。这减慢了 BMI 在提高命令处理能力(命令数量)方面的发展 [12]。为了解决这个问题,引入了多频 SSVEP 刺激方法,旨在增加在有限频率下可呈现的目标数量 [13–17]。然而,多频 SSVEP 的解码器尚未得到广泛探索。现有的多频 SSVEP 解码器包括基于功率谱密度的分析(PSDA)[15, 17]、多频典型相关分析(MFCCA)[18] 和针对每个单独用户或用例的基于训练的算法 [13, 19]。与两种无需训练的方法相比,基于训练的算法具有更高的分类准确率,但需要为每个用户进行额外的训练和界面设置。PSDA 和 MFCCA 支持即插即用,提高了 BMI 的实用性。然而,PSDA 通常解码准确率有限,因为它没有充分考虑多频 SSVEP 中的复频率特征,这些特征不仅包含刺激频率及其谐波(如单频 SSVEP),还包含刺激频率之间的线性相互作用 [16]。MFCCA 通过在解码中引入线性相互作用而显示出在多频 SSVEP 解码中的优势 [18],但 MFCCA 的一个主要问题是它是基于典型相关分析 (CCA) [20] 开发出来的,具有很高的时间复杂度。 CCA 的渐近时间复杂度为 O ( lD 2 ) + O ( D 3 ) (以 O ( n 3 ) 为界,其中 n 表示解码时的输入大小),其中 l
摘要 - 在突触分子通信中,神经递质(NTS)激活突触后受体(NTS),由随机反应扩散过程控制,因此固有地随机。目前尚不完全了解这种随机性如何影响目标细胞中的下游信号传导,最终是神经计算和学习。反应扩散过程的统计表征很难,因为NTS和受体的可逆双分子反应使系统非线性。因此,突触裂缝中受体占用率的现有模型取决于简化的假设和近似值,从而限制其实际适用性。在这项工作中,我们提出了一个新型的统计模型,以根据化学主方程(CME)来控制突触信号传递的反应扩散过程。我们展示了如何通过基于随机粒子的计算机模拟(PBSS)来计算CME效率并验证所获得的结果的准确性。此外,我们将提出的模型与文献中提出的两个基准模型进行了比较,并表明与PBS相比,它提供了更准确的结果。最后,提出的模型用于研究系统参数对NTS和受体结合事件之间统计依赖性的影响。总而言之,提出的模型为朝着突触信号传输的完整统计表征提供了一步。
这项工作涉及解决高维fokker-planck方程的新观点,即可以根据其相关粒子动力学采样的轨迹将求解PDE求解为密度估计任务的独立实例。使用这种方法,一个回避误差积累是由于在参数化函数类上集成了PDE动力学而产生的。这种方法显着简单地简化了部署,因为人们没有基于不同方程的损失条款的挑战。特别是我们引入了一类新的高维函数,称为功能层次张量(FHT)。FHT ANSATZ利用了层次的低级别结构,从而相对于维度计数,具有线性可扩展的运行时和内存复杂性的优势。我们引入了一种基于草图的技术,该技术对与方程相关的粒子动力学模拟的粒子进行密度估计,从而根据我们的ANSATZ获得了Fokker-Planck解决方案的表示。我们将提出的方法成功地应用于具有数百个变量的三个具有挑战性的时间依赖的Ginzburg-Landau模型。