* 通讯作者:moises.garin@uvic.cat 我们报告了一种通过在纳米颗粒/基底界面的弯月面中毛细管冷凝在纳米尺度上局部输送气相化学蚀刻剂的方法。该过程简单、可扩展且不需要对纳米颗粒进行功能化。此外,它不依赖于材料的任何特定化学性质,除了溶液是水性的和所涉及表面的润湿性之外,这应该使其能够应用于其他材料和化学品组合。具体而言,在这项工作中,我们通过使用暴露于 HF 蒸汽的自组装单层聚苯乙烯颗粒定期对 SiO 2 层进行图案化来演示所提出的工艺。然后使用图案化的 SiO 2 层作为掩模来蚀刻 Si 中的倒置纳米金字塔图案。已经证明了硅纳米图案化适用于从 800 nm 到 100 nm 的颗粒尺寸,对于 100 nm 纳米颗粒,实现了尺寸小至 50 nm 的金字塔。
介绍了一种用于在纳米表面结构上制造 TiN 纳米结构的电感耦合等离子蚀刻工艺。使用 Cl 2 /Ar/N 2 等离子体,在 SiO 2 上可实现 50 的选择性。研究了 N 2 流速对蚀刻速率和 TiN 侧壁上非挥发性残留物的影响。当 N 2 流速增加到 50 sccm 时,观察到 TiN 侧壁上非挥发性残留物的沉积发生变化。介绍了用 TiN 纳米结构侧壁制造的 TiN 器件的电流密度-电压特性。分别用低和高 N 2 流速蚀刻的两个不同样品的测量电流密度表明,仅在低 N 2 流速下,清洁后才会在侧壁上沉积一层绝缘层。VC 2015 美国真空学会。 [http://dx.doi.org/10.1116/1.4936885]
摘要:电色素的低功耗使其广泛用于主动阴影窗户和镜子,而柔性版本可用于可穿戴设备。最初的可拉伸电致元元素的初始演示有望与复杂表面的良好相符。在这里,完全集成的本质上可拉伸的电致色素设备被证明为单个元素和3×3显示器。导电和电离离子液含量的聚(3,4-乙二醇二苯乙烯)聚苯乙烯磺酸盐磺酸盐与聚(乙烯基醇)的电解质结合在一起,形成完整的细胞。显示出15%的传输变化,而不透明的反射设备的反射率变化为25%,即使在30%的应变下,转换时间也<7 s。在电化学和机械应变循环下均具有稳定性。一个被动矩阵显示器在应变下表现出可寻址性和低串扰。可比的光学性能与柔性电色素和更高的可变形性提供了可穿戴,生物识别监测和机器人皮肤设备的有吸引力的品质。关键字:电致色素,可拉伸,PEDOT,显示,导电聚合物,离子皮肤,电子皮肤
在最简单的延伸群集配置中,vSAN 延伸群集的所有成员都将具有标记为 vSAN 的 VMkernel 接口,以用于所有与 vSAN 相关的流量。vSAN 延伸群集和 vSAN 2 节点群集支持将见证主机设备的流量与数据站点的流量分开。这称为“见证流量分离”(WTS),是一种将应用于参与延伸群集的两个数据站点中的所有主机的配置。它不适用于见证主机设备的配置。此自定义在适应网络条件或要求方面提供了更大的灵活性,例如见证站点的独特网络特性或各种安全要求。
摘要 选择性激光熔化工艺代表了生物医学领域制造定制植入物的一个有趣机会。然而,通过增材制造获得的部件的表面粗糙度是一个主要限制因素,并且会影响表面润湿性。在这项研究中,采用化学蚀刻来解决这一问题。为此,分析了化学蚀刻参数(如浸入时间和溶液成分)对表面粗糙度、重量损失和润湿性的影响。考虑了不同的样品(通过不同的打印方向获得)。测试表明,由于化学蚀刻,表面的粗糙度和润湿性得到改善。主要结果表明,对表面润湿影响最大的参数是两个:粗糙度和材料特性(随样品深度而变化)。
我的研究重点是研究与年龄相关疾病的致病机制,例如癌症和神经退行性疾病。专注于前列腺癌和具有性偏见的癌症,以及脊柱骨骼肌肉萎缩和肌萎缩性侧面硬化症,我的研究有助于表明:1)翻译后修饰(PTM):磷酸化和精氨酸甲基化的功能促进蛋白的功能和刺激性的毒性,使蛋白质的毒性具有启发性,并具有刺激性的毒性。因为这些PTM具有治疗潜力; 2)外围组织:我们有助于表明骨骼肌有助于体重减轻,能量不平衡和神经元变性,损害通常是主要的,并且不是神经元功能障碍和损失的继发性,而骨骼肌是一种有价值的治疗靶向靶向组织; 3)基因表达的表观遗传失调:我们表明,表观遗传作者是由作为转录因子的疾病蛋白招募的,并有助于与年龄相关的疾病的发病机理。基于我们的工作,将两种化合物,胰岛素样生长因子1和β-激动剂(clenbuterol)转化为SBMA的II期临床试验。
感知虚拟对象的空间信息(例如,方向,距离)对于寻求不可思议的虚拟现实(VR)体验的盲人用户至关重要。为了促进盲人用户的VR访问权限,在本文中,我们研究了两种类型的触觉提示(多余的提示和皮肤伸展线索)在传达虚拟物体的空间信息时,当应用于盲人手的背侧时。我们与10个盲人用户进行了一项用户研究,以调查他们如何使用定制的触觉机构在VR中感知静态和移动对象。我们的结果表明,盲人用户可以在接收皮肤拉伸线索时更准确地理解对象的位置和移动,这是对纤维曲折提示的。我们讨论了两种类型的触觉提示的利弊,并以设计建议的设计建议,以实现VR可访问性的未来触觉解决方案。
制造微机电系统 (MEMS) 的两种主要方法是体微加工技术和表面微加工技术。在体微加工的情况下,可移动结构的制造是通过选择性蚀刻掉结构层下面的处理基板来完成的,而在表面微加工中,一系列薄膜沉积和对堆栈中特定层(称为牺牲层)的选择性蚀刻产生最终所需的悬浮微结构。这两种 MEMS 制造方法的关键步骤是控制释放区域,从而精确定义柔顺机械结构锚 [1],如图 1 a 和 b 所示,显示了锚的底蚀。湿法或干法蚀刻工艺都可以去除牺牲层,使用前一种方法会遇到粘滞,而后一种方法会引入污染或残留物 [2]。选择牺牲层时需要考虑的重要设计因素包括:(i) 沉积膜的均匀性和厚度控制、(ii) 沉积的难易程度、(iii) 蚀刻和沉积速率、(iv) 沉积温度以及 (v) 蚀刻选择性。光刻胶由于易于蚀刻(使用氧等离子体或有机溶剂)且不会损害大多数结构材料而被用作牺牲层 [3–6]。然而,该工艺仅限于低温
顶部是驾驶室,业余游艇爱好者可以在驾驶室里度过周末,感觉自己像个老水手,指挥着停泊地里最漂亮的小船,或者在普尔曼式车厢里休息,里面的木工质量很少有船厂能与之媲美。别忘了一对桅杆,刚好倾斜
Thomas Lerond、Dmitri Yarekha、Vanessa Avramovic、Thierry Melin、S. Arscott。使用氙二氟化物蚀刻绝缘体上的硅,对芯片边缘硅微悬臂进行表面微加工。《微力学与微工程杂志》,2021 年,31 (8),第 085001 页。�10.1088/1361- 6439/ac0807�。�hal-03411474�