流量控制在于修改自然状态,以使另一个被认为是有利的状态收敛,因为可能会减少阻力或噪声辐射。在本文中,在亚音速开腔流中进行开放环路控制实验。在不稳定的流量控制的情况下,将控制焦点带入了流量的弹性修改,而不是对平均流属性的修改。因此,使用任意信号和强迫线性的强迫范围对于这种流量控制案例至关重要。从这个意义上讲,已经实施了微磁电机机电系统的线性阵列,以在开放式腔内执行开通环路控制实验。执行器能够以线性行为同时生成准稳态和脉冲喷射。我们证明了微欧洲的效率降低了腔振荡。准稳态喷气机在空腔基本振幅声压水平中降低了20 dB。脉冲喷气机启用了额外的空腔音调幅度降低,这取决于脉动频率和强迫振幅。这些结果是朝着实施开放式流量的闭环控制的第一步。
交换相互作用与磁结晶各向异性之间的竞争可能会带来具有极大兴趣的新磁状态。可以进一步使用施加的静水压力来调整其平衡。在这项工作中,我们研究了沿易于轴施加的外部磁场中双轴an- tiferromagnet的磁化过程。我们发现,在静液压压力下,在这种材料中观察到的ISIN类型的单磁管转变为两个过渡,这是一阶自旋flop跃迁,然后是二阶阶层向极化铁磁状态的二阶转变,接近饱和。通过使用高静水压力改变层间距离,在低温下,在层次的Bulk CRSBR中获得了这种可逆的调节,该磁相可以有效地作用于层间磁力交换上,并通过磁光谱光谱探测。
海洋生物的颜色范围令人难以置信。尽管在海洋动物物种中通常对结构性颜色机制和功能进行了充分的研究,但对于具有结构性色彩的海洋大量藻类(红色,绿色和棕色海藻)存在巨大的知识差距,这些现象在这些光合物生物体中的生物学意义。在这里,我们表明,红色藻类软骨crispus的配子体生命历史阶段的结构颜色在与其他颜料的协同作用中起着重要作用。,我们已经证明了蓝色结构色素减弱了更伟大的光,同时模仿了通过外部触角(植物质体)的绿色和红光收获,具有依赖强度依赖强度的光能机制。这些对结构颜色与光合光管理之间关系的见解进一步了解了我们对所涉及机制的理解。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要在基因组成方面具有巨大的多样性,包括多种推定的抗生素耐药性基因,阿巴岛是鲍曼尼杆菌杆菌多药的潜在贡献者。但是,ABAR对抗生素耐药性和细菌生理学的有效贡献仍然难以捉摸。为了解决这个问题,我们试图准确删除Abar Islands并恢复其插入站点的完整性。为此,我们设计了一种多功能无疤的基因组编辑策略。我们在最近的两个鲍曼尼菌临床菌株中形成了这种遗传修饰:分别携带19.7 kbp和86.2 kbp的Abar1和Abar1岛的菌株AB5075和菌株AYE。然后,在父母菌株及其固定衍生物之间进行抗生素敏感性。通过该岛的开放阅读框(ORF)的预测功能所预期的,抗抗性的抗抗药性在野生型和ABAR11固定的AB5075菌株之间相同。ABAR1具有25个ORF,预测抗生素类别具有抗性,并且AYE ABAR1固定衍生物显示出对多种类别的抗生素的可疑性。此外,ABARS的固化恢复了高水平的自然转化性。的确,大多数阿巴群岛都被插入与自然转化有关的通讯基因中。我们的数据表明,Abar插入有效地失活,并且还原的通信是功能性的。固化始终导致高度转换,因此很容易遗传诱因。ABAR的修改提供了对Abar获取功能的洞察力的见解。
在本研究中,研究人员从渤海河口沉积物中开发出一种富集培养物,发现菌株W不仅能在高盐度条件下(5.1%NaCl)生存,而且能够茁壮成长,将有毒的1,2-二氯乙烷分解成无害的乙烯。
主动上肢外骨骼是神经恢复的潜在强大工具。该潜力取决于几种基本控制模式,其中一种是透明度。在这种控制模式下,外骨骼必须遵循人类运动而不会改变它,从理论上讲,这意味着无效的相互作用工作。达到透明度的水平高,尽管不完美,既需要一种适当的控制方法,又需要对外骨骼对人类运动的影响进行深入评估。本文基于识别外骨骼动力学的识别,或者是在力反馈控制或结合下引入了三种不同的“透明”控制器的评估。因此,这些控制器可能会通过设计明显诱导不同水平的透明度。进行的调查可以更好地理解人类如何适应一定是不完事的透明控制器。一组14名参与者受到这三个控制者的束缚,同时在副臂平面进行运动。随后的分析是根据相互作用,运动学,肌电图和人体工程学反馈问卷进行的。结果表明,在执行透明的控制器较少的情况下,参与者的策略往往会引起相对较高的相互作用工作,并具有较高的肌肉活动,从而导致运动学指标的敏感性很小。换句话说,截然不同的残留互动工作并不一定会引起非常不同的运动运动学。这样的行为可以通过自然的人类倾向来解释以维护其首选的运动学的努力,应在将来的透明控制器评估中考虑到这一点。
传记草图Anna Cereseto,博士是特伦托大学分子生物学实验室的主要研究者,并担任Cibio系副总监。她于1990年获得热那亚大学的生物科学学位,此后她搬到了美国马里兰州贝塞斯达的美国国立卫生研究院(NIH),研究逆转录病毒的分子生物学。1998年,Cereseto博士在康奈尔大学担任博士后职位,并成为纽约西奈山医学院基因治疗研究所的讲师。在2000年,她回到意大利,在罗马的伊斯蒂托图超级迪·萨尼塔(ISTITUTO SUPERIOREDIANITà(ISS)工作,然后加入了Trieste的国际基因工程与生物技术中心(ICGEB)。2003年,Cereseto博士搬到了比萨的Scuola Normale Superiore(SNS)担任助理教授,2010年,她成为特伦托大学的教授。在特伦托(Trento),她领导着一个生物技术研究小组,该研究小组着重于基因组疗法的基因组编辑,特别着重于囊性纤维化。
骨肉瘤细胞的去分化导致预后不良。我们计划识别与细胞去分化有关的关键分子,并探索它们如何促进骨肉瘤细胞的肺转移。我们进行了一个球体形成测定法,并确认可以将球体细胞重新分化为特定培养基中的成骨细胞,脂肪细胞和软骨细胞,并且在细胞表面检测到了细胞表面,这表明球体样细胞是透射细胞的。血小板传播1(THBS1)和ITGA被确定为去分化的关键分子,而THBS1表达较高的骨肉瘤患者的预后较高。thbs1在去分化的早期阶段促进了itga1和itga6在细胞膜上的积累,从而增加了细胞质中FAK,RASGRF1和MLC2的磷酸化,并促进细胞骨架重塑。我们的结果表明,THBS1通过促进细胞骨架重塑来促进细胞去分化和肺转移,并且ITGA1和ITGA6在介导细胞外向至细胞内信号中起着重要作用。这种介导作用主要发生在去分化的早期阶段。
1 FSC-Forest管理委员会®(许可证号FSC®-C010852)2 PEFC-PROGRAM用于认可森林认证计划。