听觉诱发电位 (AEP) 方法通常用于研究海洋哺乳动物的听力能力,并扩大了圈养和搁浅动物的可用听力图数据。AEP 将继续成为增加听力图样本量的主要方法,因为它们比行为听力阈值方法更容易实施,并且可以用于未经训练或搁浅的动物。然而,由于 AEP 阈值的频率依赖性高于行为听力阈值,AEP 目前仅用于定义物种的听力上限频率。因此,海军目前仅使用行为听力阈值来评估绝对听力灵敏度。研究和解释这两种方法的差异的能力可能使 AEP 听力图能够进行调整,并与从行为听力图方法获得的听力图进行比较。海军将受益于一种标准化的方法,通过这种方法可以调整 AEP 听力阈值并将其与行为阈值进行比较。这将使更多的 AEP 听力图可用于加权函数开发和其他海军环境合规工作,扩大 AEP 结果在未来标准制定中的应用。
Belardinelli,P.,Biabani,M.,Blumberger,D.M.,Bortoletto,M.,Casarotto,S.,David,David,O.,Desideri,D.,Etkin,A.,Ferrarelli,F.,F. Kimiskidis,V。K.,Lioumis,P.,Miniussi,C.,…Ilmoniemi,R。J.(2019)。TMS中的可重复性 - 脑电图研究:呼吁数据共享,标准程序和有效的实验控制。大脑刺激,12,787 - 790。Burns,E.,Chipchase,L。S.,&Schabrun,S.M。(2016)。 响应急性肌肉疼痛的主要感觉和运动皮层功能:系统评价和荟萃分析。 欧洲痛苦杂志,20,1203 - 1213。https://doi.org/10.1002/ejp.859Buzsáki,G。,&Draguhn,&Draguhn,A。 (2004)。 皮质网中的神经元振荡。 Science(1979),304,1926 - 1929。https://doi.org/10.1126/science.1099745 Casali,A.G.,Casarotto,S.,Rosanova,M.,Mariotti,M。,M。和Massimini,M。(2010)。 一般指数以表征大脑皮层对TMS的电反应。 Neuroimage,49,1459 - 1468。 Casarotto,S.,Fecchio,M.,Rosanova,M.,Varone,G.,D'Ambrosio,S.,Sarasso,S.,Pigorini,A.,Russo,S.,Comanducci,A. RT-TEP工具:TMS- 的实时可视化Burns,E.,Chipchase,L。S.,&Schabrun,S.M。(2016)。响应急性肌肉疼痛的主要感觉和运动皮层功能:系统评价和荟萃分析。欧洲痛苦杂志,20,1203 - 1213。https://doi.org/10.1002/ejp.859Buzsáki,G。,&Draguhn,&Draguhn,A。(2004)。皮质网中的神经元振荡。Science(1979),304,1926 - 1929。https://doi.org/10.1126/science.1099745 Casali,A.G.,Casarotto,S.,Rosanova,M.,Mariotti,M。,M。和Massimini,M。(2010)。一般指数以表征大脑皮层对TMS的电反应。Neuroimage,49,1459 - 1468。Casarotto,S.,Fecchio,M.,Rosanova,M.,Varone,G.,D'Ambrosio,S.,Sarasso,S.,Pigorini,A.,Russo,S.,Comanducci,A.RT-TEP工具:TMS-
摘要 — 在过去的几十年中,情绪研究一直试图识别一种“生物标志物”或一致的大脑活动模式,以表征单一类别的情绪(例如恐惧),该模式在该类别的所有实例中都保持一致,无论个体和环境如何。在这项研究中,我们研究了人们在观看选择用来唤起特定情绪类别实例的视频片段时情绪体验过程中的变化而不是一致性。具体而言,我们开发了一种顺序概率方法来模拟参与者在观看视频期间大脑活动的时间动态。我们将这些片段期间的大脑状态描述为血氧水平依赖性(BOLD)信号模式中状态转换之间的不同状态占用期。我们发现在观看同一视频的不同个体之间状态占用概率分布存在很大差异,这支持了以下假设:当涉及到情绪体验的大脑相关性时,变化确实可能是一种常态。
诱发电位 (EP) 是嵌入自发性脑电图活动 (EEG) 中的离散信号。从噪声中提取它们需要重复记录。视觉或听觉刺激触发采集系统,然后收集“诱发电位”。诱发电位不同于自发性神经活动 (EEG),因为它与触发“事件”同步。实际上,触发事件的信号用于采集诱发电位信号。诱发电位 (PE) 被定义为大脑有限区域相对于另一个电中性区域的电势的瞬态变化。EP 由放置在活动结构发出的电场中的电极捕获,并与所谓的“参考”电极检测到的电位进行比较。当参考电极捕获脑神经活动时,传感器系统称为双极。另一方面,当参考电极位于没有大脑活动的区域(例如耳垂)时,传感器系统称为单极。在最好的情况下,我们刚才看到的感兴趣的诱发电位 (PE) 是在离源很远的地方捕获的,其幅度非常小,不超过十微伏。此外,它嵌入在电极捕获的连续大脑活动(EEG 高于 100 微伏)中。PE 有时低于放大器的背景。因此,在检查其特性之前,有必要从背景噪声中提取 PE。40 年来使用的经典方法是平均法。该方法由同步连续响应的平均值组成。诱发电位是一种根据受试者的注意力而发展的大脑活动,因此平均值不足以令人满意地研究它。
Daniel Ciampi de Andrade 神经可塑性和疼痛中心 (CNAP) 奥尔堡大学医学院健康科学与技术系 Selma Lagerløfs Vej 249 9260 Gistrup 丹麦 电子邮件:dca@hst.aau.dk
使用代码调节的诱发潜力(C-VEP)对脑部计算机界面(BCIS)进行研究,最近取得了显着的进步(Martínez-Cagigal等,2021)。这些突破归因于刺激协议的复杂设计和创新的解码技术,它们共同建立了基于C-DEP的BCIS作为通信和控制应用程序的当前最新技术。该研究主题旨在通过促进原始贡献来推动领域的前进,并特别着眼于提高C-DEP驱动的BCI系统的可用性,可靠性和实用性。的目标是更加关注这一新兴领域,尽管它取得了显着的成就,但仍需要在临床环境和日常生活中促进这些技术的广泛采用。C-VEP刺激方案与其他主要类别的诱发反应明显不同,例如与事件相关的电位(ERP)和稳态视觉诱发的潜力(SSVEP)(Martínenez-Cagigal等人,2021年)。ERP协议通常基于奇数范式,其速度要慢得多,典型的刺激发作异步(SOA)约为250 ms(4 Hz),而C-vep中使用的至少16 ms(60 Hz)的速度相比。同样,尽管与ERP相比,SSVEP范式也相对较快,但SSVEP协议依赖于频率的方法,在这种方法中,刺激仅限于具有特定频率和相位的周期性信号。相比之下,C-VEP协议采用了噪声方法,允许更广泛的刺激序列(包括非周期性模式),同时还表现出对窄带干扰的更大弹性。此外,最近的证据表明,从信息理论的角度来看,在基于C-DEP的BCIS中,可以通过视觉诱发的途径达到的最大信息传输速率显着超过了基于SSVEP的系统(Shi等,2024)。
摘要:脑机接口(BCI)的关键参数是输入速度、准确性、易用性和输入数量。稳态视觉诱发电位(SSVEP)–BCI在前三个类别中表现优异,但在输入数量方面存在问题。我们设计了一个50选择性SSVEP–BCI,以增加输入数量,以便将来实现日语和PC键盘输入。为了增加输入数量,我们提高了频率分辨率。通过将刺激的分辨率从0.2Hz更改为0.1Hz,可以将输入数量翻倍。这是因为可以将输入数量翻倍。我们对受试者的原始和伪信号数据进行了典型相关分析。噪声非常大,而输出典型相关向量最大值的传统分析方法的正响应率很低。因此,我们进行了频带限制,通过频率阈值区分SSVEP成分。我们还引入了多数表决算法来消除不可分类的数据。结果表明:脑机接口的平均正确率为55.11%,最高为79.53%;平均信息传输速率为28.05bits/min,最高为45.16bits/min。因此,实验结果表明,频率分辨率的提高可以增加输入的数量。关键词:脑机接口,稳态视觉诱发电位,典型相关分析,多选择1.引言
摘要 众所周知,视觉可以引导运动,但人们很少意识到运动皮层也为视觉系统提供输入。在本文中,我们研究了视觉刺激的神经处理是否在运动活动期间受到剧烈调节,假设在从事依赖于视觉刺激的运动任务时,视觉诱发反应会得到增强。为了验证这一点,我们告诉参与者,他们的大脑活动是控制视频游戏,而实际上,该游戏是预先录制的游戏的回放。这种欺骗对一半的参与者有效,旨在调动运动系统,同时避免与实际运动或躯体感觉相关的诱发反应。在其他试验中,受试者主动使用键盘控制玩游戏或被动观看回放。视觉诱发反应的强度是通过连续刺激和头皮上的诱发电位之间的时间相关性来衡量的。我们发现被动观看期间相关性降低,但主动和假玩之间没有差异。在假游戏过程中,中央电极上的 Alpha 波段 (8-12 Hz) 活动减少,表明尽管没有明显的运动,但运动皮层仍然被激活。为了解释游戏过程中注意力的潜在增加,我们进行了第二项研究,受试者在观看过程中数屏幕上的项目。我们再次发现假游戏过程中相关性增加,但数数和被动观看之间没有差异。虽然我们不能完全排除注意力的参与,但我们的研究结果确实表明在主动视觉过程中视觉诱发反应有所增强。
脑冲程是一个灾难性事件,可能会损害人体的各种器官,包括视觉系统。视觉的电生理学是一种诊断技术,用于评估视觉系统的不同病理状况,主要是视觉途径和视网膜。电视图(ERG),电视学(EOG)和视觉诱发电位(VEP)在该领域通常使用电生理技术。Abdolalizadeh等。(2022)进行了一项研究,以研究使用ERG对毒药对患者的潜在影响。该研究包括20名参与者,由十名男性和十名女性组成,年龄在15至30岁之间。这些发现揭示了这些患者的视网膜变化,这些变化是通过测量ERG的振幅(特别是B波峰)诊断的[1]。同一研究小组还检查了使用EOG接受抗癫痫药物治疗的患者的视网膜色素上皮(RPE)。他们使用了同一组患者并观察到病理变化
前庭诱发肌源性电位 (VEMP) 通常用于评估前庭神经和耳石器官的两个部分 (1–5)。在成人中,可以通过气导或骨导刺激可靠地诱发 VEMP (6);然而,尚未发表评估儿童 VEMP 可靠性的类似研究。VEMP 是对高强度刺激作出反应而诱发的肌肉电位 (1)。颈部 VEMP (cVEMP) 是从收缩的胸锁乳突肌 (SCM) 同侧记录的短潜伏期抑制反应,可提供有关囊和下前庭神经功能的信息 (1)。眼部 VEMP (oVEMP) 是从下斜肌对侧记录的兴奋反应,可提供有关椭圆囊和上前庭神经功能的信息 (7)。