二维拓扑超导体(TSC)代表一种外来的量子材料,在边界处以分散性majorana模式(DMM)表现出Quasiparticle激发。一个域壁dmm可以在两个TSC域之间的边界上出现,其配对间隙中的π相偏移或π相移,只能通过磁场调节。在这里,我们提出了铁电(Fe)TSC的概念,该概念不仅丰富了域壁DMM,而且显着使它们具有电气调谐。表明,配对间隙的π相移位显示在相反的Fe极化的两个TSC域之间,并通过反向Fe极化而切换。与铁磁(FM)极化结合使用,域壁可以容纳螺旋,手性的两倍和融合的DMM,可以通过更改电气和/或磁场的方向将其彼此转移。此外,基于第一原理的计算,我们证明α -In 2 SE 3是具有FM层和超导体底物的邻近性Fe TSC候选者。我们设想Fe TSC将通过电场显着缓解DMM的操纵,以实现容忍度的量子计算。
− − 是一个基于 Landau-Ginzburg-Devonshire (LGD) 理论计算铁电单晶和薄膜热力学单畴平衡态及其特性的程序。利用 SymPy 库的符号操作,可以求解控制方程以及适当的边界条件,从而快速最小化晶体的自由能。利用流行的差分进化算法,通过适当的混合,可以轻松生成多个相图,例如块体单晶的压力-温度相图和单畴薄膜系统的常见应变-温度相图。此外,可以同时计算稳定铁电相的多种材料特性,包括介电、压电和电热特性。对薄膜和单晶系统进行了验证研究,以测试开源程序的有效性和能力。
通过其对低对称晶体相的依赖性,铁电性本质上是与给定材料相关的相位图较低温度范围的特性。本文提供了结论性的证据,即在铁电Al 1-X SC X N的情况下,低温必须被视为纯粹的术语,因为确认其铁电到 - 偏移过渡温度可以超过1100°C,因此几乎任何其他任何其他薄膜。我们通过研究0.4-2μm厚的Al 0.73 SC 0.73 SC 0.27 N膜在MO底部电极上通过原位高温X射线衍射和渗透者测量在MO底部电极上生长的结构稳定性得出了这一结论。我们的研究表明,在整个1100°C退火循环中,Al 0.73 SC 0.27 N的Wurtzite型结构是通过恒定的C / A晶格参数比率可见的。原位介电常数测量最多执行的1000°C强烈支持此结论,并包括仅在测量间隔非常上端的发散介电常数的开始。我们的原位测量值通过原位(扫描)透射电子显微镜以及极化和容量滞后测量得到很好的支持。这些结果证实了在完整的1100°C退火处理过程中铭刻极化的稳定性旁边的尺度上的结构稳定性。因此,Al 1-X SC X n是第一个容易获得的薄膜铁电薄膜,其温度稳定性几乎超过了微技术中发生的所有热预算,无论是在制造过程中还是设备的寿命,即使在最恶劣的环境中也是如此。
摘要 经过百余年的发展,铁电材料向人们展示了其强大的潜力,越来越多的铁电材料被用于铁电晶体管(FeFET)的研究中。作为新一代神经形态器件,铁电材料凭借其强大的功能和诸多特性引起了人们的关注。本文总结了近年来铁电材料体系的发展,并探讨了人工突触的模拟。主流的铁电材料分为传统的钙钛矿结构、萤石结构、有机聚合物和新型二维范德华铁电体。介绍了各材料体系的原理、研究进展以及针对类脑计算机的优化,并总结了最新的应用进展。最后讨论了不同材料体系的适用范围,旨在帮助人们根据不同的需求筛选出不同的材料体系。 1. 引言
submitted by BAŞAR SÜER in partial fulfillment of the requirements for the degree of Doctor of Philosophy i n Metallurgical and Materials Engineering, Middle East Technical University by, Prof. Dr. Naci Emre Altun Dean, Graduate School of Natural and Applied Sciences Prof. Dr. Ali Kalkanlı Head of the Department, Metallurgical and Materials Eng Prof. Dr. Arcan Fehmi Dericioğlu Supervisor, Metallurgical and Materials Eng, METU Prof. Dr. Özlem Aydın Çivi Co-Supervisor, Electrical – Electronics Eng, METU Examining Committee Members: Prof. Dr. Caner Durucan Metallurgical and Materials Engineering, METU Prof. Dr. Arcan Fehmi Dericioğlu Metallurgical and Materials Engineering, METU Prof. Dr. Bora Maviş Mechanical Engineering, Hacettepe大学协会。Metu Assoc的SimgeçınarAygün冶金工程和材料工程教授。教授ÇankayaUniversity博士教授ÇankayaUniversity博士
快速、可逆、低功耗操控自旋纹理对于下一代自旋电子器件(如非易失性双极存储器、可切换自旋电流注入器或自旋场效应晶体管)至关重要。铁电拉什巴半导体 (FERSC) 是实现此类器件的理想材料。它们的铁电特性使得能够通过可逆和可切换的极化对拉什巴型自旋纹理进行电子控制。然而,只有极少数材料被确定属于此类多功能材料。这里,Pb 1 − x Ge x Te 被揭示为一种新型的纳米级 FERSC 系统。通过温度相关的 X 射线衍射证明了铁电相变和伴随的晶格畸变,并通过角分辨光电子能谱测量了它们对电子特性的影响。在少数纳米厚的外延异质结构中,较大的 Rashba 自旋分裂表现出随温度和 Ge 含量变化的宽调谐范围。本研究将 Pb 1 − x Ge x Te 定义为用于自旋电子学应用的高电位 FERSC 系统。
谐振隧穿是一种量子力学效应,其中电子传输由量子孔(QW)结构内的离散能级控制。一种铁电谐振隧道二极管(RTD)利用QW屏障的开关电动极化状态来调节设备电阻。在这里,据报道,在All-Perovskite-氧化物BATIO 3 /SRRRUO 3 /BATIO 3 QW结构中发现了鲁棒的室温铁电调节谐振隧穿和负差分抗性(NDR)行为。通过BATIO 3铁电的可切换极性可调节谐振电流振幅和电压,其NDR比调制了≈3个数量级和一个OFF/ON电阻率超过2×10 4的OFF/ON电阻比。观察到的NDR效应被解释了由电子 - 电子相关性驱动的Ru-T 2g和Ru-E G轨道之间的能量带隙,如下性功能理论计算所示。这项研究为未来氧化物电子产品中的基于铁电的量子驾驶装置铺平了道路。
图 1. (4,4-DFPD) 2 PbI 4 薄膜的制备和通过 XRD 和 AFM 进行表征。a) 通过滴铸、旋涂和旋涂并伴有真空极化处理沉积 (4,4-DFPD) 2 PbI 4 2D 钙钛矿薄膜的示意图。b) 制备的薄膜的 XRD 图案。插图显示了 Williamson-Hall 图,用于分析薄膜中的应变无序性。通过 c) 滴铸、d) 旋涂和 e) 旋涂并伴有真空极化处理沉积的薄膜的 3D 表面形貌 AFM 图像。
放松剂铁电源形成一类特殊的功能材料,通常由复杂的钙钛矿Pb(Bb')O 3组成,如Pb所示(Mg 1/3 NB 2 /3)O 3所示,其中Mg和Nb的组合序对其属性至关重要。在这项工作中,使用第一个基于基本的模型进行分析表明,尽管静电相互作用很重要,但可以采用最近的邻居假设(用于金属合金)来理解PB(BB')O 3中的组成顺序。使用川崎蒙特 - 卡洛方法的数值模拟可以通过最大化B-B'对的数量(或Bethe的参数)来对实验观察到的组成排序进行建模,这是确定排序的重大因素。还讨论了配置能量退化的微妙之处,这解释了这种系统固有存在的部分疾病。
二维拓扑超导体(TSC)代表一种外来的量子材料,在边界处具有分散性主要模式(DMMS),在边界上表现出quasiparti-cle激发。一个域壁DMM可以在两个TSC域之间的边界上出现,其配对缝隙中的两个TSC域或具有π相移的边界,只能通过磁场来调节。在这里,我们提出了铁电(Fe)TSC的概念,该概念不仅丰富了域壁DMM,而且显着使它们具有电气调节。表明,配对隙的π相移位于相反的Fe极化的两个TSC域之间,并通过反向Fe极化来切换。与铁磁(FM)极化结合使用,域壁可以容纳螺旋,手性的两倍和融合的DMM,可以通过更改电气和/或磁性磁场的方向来彼此转移。此外,基于第一个原理的计算,我们证明了α -In 2 Se 3是具有FM层和超导体底物的邻近性Fe TSC候选者。我们设想Fe TSC将通过电气场显着轻松地操纵DMM,以实现容忍故障的量子计算。
