图2在室温下(t = 300k),在正骨catio 3中(110)型DWS的结构和极性特性。(a)(110)dw的几何图形和在catio 3的正栓相中的几何学和方向的草图。(b)是由两个平行DWs组成的三明治模型,具有反平行DW极向量(绿色箭头)。DW内部的铁弹性双角和最大极化为C.A.0.52和2.4c/cm -2。插图(b)是通过透射电子显微镜(TEM)获得的DW内部的极向量[16]。X-Y,X-Z和Y-Z(双壁平面)平面内DW极化的局部细节显示在(C-D),(E-F)和(G-H)中。绿色和红色箭头是与图相对应的奇数甚至层的极性向量。1(d)。小极化倾斜存在于X-Y和X-Z平面内,而在双壁(Y-Z)内发现了相对较大的倾斜度。由于全球倒置中心对称性的保护,附近双壁的总体极化向量取消了。极性向量箭头被放大150倍以进行澄清。
摘要:铁电范德华(VDW)异质结构的接口驱动效应为搜索替代设备体系结构提供了新的机会,以克服von Neumann瓶颈。但是,它们的实施仍处于起步阶段,主要是通过电气控制。在寻求新型神经形态体系结构时,制定其他光学和多态控制的策略是最大的兴趣。在这里,我们证明了铁电场效应晶体管(FEFET)的铁电偏振状态的电和光学控制。完全由Res 2/hbn/cuinp 2 S 6 VDW材料制成的FeFets达到的ON/OFF比率超过10 7,磁滞存储器窗口最大为7 V宽,多个寿命超过10 3 s。此外,Cuinp 2 S 6(CIPS)层的铁电偏振可以通过光激发VDW异质结构来控制。我们进行了波长依赖性研究,该研究允许在极化的光学控制中识别两种机制:带对波段光载体在2D半导体RES 2中生成2D半导体电压,并进入2D Ferroectric CIPS。最后,通过在三种不同的突触模式下操作FEFET来证明异突触可塑性:电刺激,光学刺激和光学辅助突触。模拟关键的突触功能,包括电气长期可塑性,光电可塑性,光学增强和峰值速率依赖性可塑性。模拟的人工神经网络表现出非常出色的精度水平,即接近理想模型突触的91%。这些结果为未来对光面性VDW系统的研究提供了新的背景,并将铁电VDW异质结构放在下一个神经形态计算体系结构的路线图上。关键字:神经形态计算,突触,光电子,铁电,二维材料■简介
尽管对铁电体的尺寸效应进行了广泛的研究,但是反铁电体的结构和特性在尺寸减小的情况下如何演变仍然难以捉摸。鉴于反铁电体在高能量密度存储应用方面具有巨大潜力,了解它们的尺寸效应将为优化小尺度器件性能提供关键信息。本文研究了无铅 NaNbO 3 膜中反铁电性的基本本征尺寸依赖性。通过广泛的实验和理论方法,探究了膜厚度减小后有趣的反铁电到铁电的转变。这种尺寸效应导致 40 nm 以下的铁电单相,以及在此临界厚度以上铁电和反铁电序共存的混合相状态。此外,结果表明反铁电和铁电序是电可切换的。第一性原理计算进一步表明,观察到的转变是由膜表面引起的结构扭曲驱动的。这项工作为反铁电体中内在尺寸驱动的缩放提供了直接的实验证据,并展示了利用尺寸效应通过膜平台驱动环境无铅氧化物中的突发特性的巨大潜力。
用于负电容场效应晶体管的缺氧无唤醒 La 掺杂 HfO2 铁电体的水性制备方法 / Pujar, Pavan;Cho, Haewon;Kim, Young-Hoon;Zagni, Nicolo;Oh, Jeonghyeon;Lee, Eunha;Gandla, Srinivas;Nukala, Pavan;Kim, Young-Min;Alam, Muhammad Ashraful;Kim, Sunkook。- 收录于:ACS NANO。- ISSN 1936-0851。- 17:19(2023),第 19076-19086 页。[10.1021/acsnano.3c04983]
1 米尼奥大学和波尔图大学物理中心 (CF-UM-UP),米尼奥大学,Campus de Gualtar,4710-057 Braga,葡萄牙 2 材料和新兴技术物理实验室,LapMET,米尼奥大学,4710-057 Braga,葡萄牙 3 NaMLab gGmbH,Noethnitzer Str. 64a,01187 德累斯顿,德国 4 Components Research,英特尔公司,Hillsboro,OR,97124 美国 5 SPEC,CEA,CNRS,U niv ersit ´ e Paris-Saclay,CEA Saclay,91191 Gif-sur-Yvette,法国 6 IBM Research Zurich,S ¨ aumerstrasse 4,8803 Ru ¨ sc hlik on 瑞士 7 电气与信息技术,隆德大学,Box 118,隆德,22 100 瑞典 8 NanoLund,隆德大学,Box 118,隆德,22 100 瑞典 9 材料科学与工程系和校际半导体研究中心,首尔国立大学工程学院,首尔,08826 韩国 10 罗格斯新兴材料中心和物理与天文系,新泽西州皮斯卡塔韦08854,美国 11 三星先进技术学院 (SAIT) 设备研究中心,水原,16678 大韩民国 12 格勒诺布尔阿尔卑斯大学,CEA,LETI,F-38000 格勒诺布尔,法国 13 Helmholtz-Zentrum Berlin fu ě r Materialien und Energie,Hahn-Meitner-Platz 1,Berlin 14109,德国 14国家科学研究中心 DEMOKRITOS, 15341, 雅典, 希腊
submitted by BAŞAR SÜER in partial fulfillment of the requirements for the degree of Doctor of Philosophy i n Metallurgical and Materials Engineering, Middle East Technical University by, Prof. Dr. Naci Emre Altun Dean, Graduate School of Natural and Applied Sciences Prof. Dr. Ali Kalkanlı Head of the Department, Metallurgical and Materials Eng Prof. Dr. Arcan Fehmi Dericioğlu Supervisor, Metallurgical and Materials Eng, METU Prof. Dr. Özlem Aydın Çivi Co-Supervisor, Electrical – Electronics Eng, METU Examining Committee Members: Prof. Dr. Caner Durucan Metallurgical and Materials Engineering, METU Prof. Dr. Arcan Fehmi Dericioğlu Metallurgical and Materials Engineering, METU Prof. Dr. Bora Maviş Mechanical Engineering, Hacettepe大学协会。Metu Assoc的SimgeçınarAygün冶金工程和材料工程教授。教授ÇankayaUniversity博士教授ÇankayaUniversity博士
迄今为止,简单二元材料类中的铁电性 (FE) 已引起人们对其多功能应用的极大兴趣。具体而言,利用第一性原理密度泛函计算预测了岩盐氧化物中的 FE 有序性 [1]。参考文献 [2] 指出,利用外延应变确实可以在铁磁岩盐 EuO 中诱导铁电性,从而使其具有多铁性 [3]。实验上,可以通过合适基底上的晶格失配、拉伸薄膜或通过化学掺杂剂来调整应变 [4,5]。外部应变已被用于诱导新型金属-绝缘体转变 [6] 和层状氧化物中的极性-非极性转变 [7]。此外,在 c 方向施加正应变时,电场可以在最初中心对称的氧非化学计量氧化物 Gd 掺杂 CeO 2-x 中诱导化学膨胀和高压电性 [8]。
由于具有 CMOS 兼容性和可扩展性的特点,HfO 2 基铁电体是下一代存储器件的有希望的候选材料。然而,它们的商业化受到可靠性问题的极大阻碍,疲劳是一个主要障碍。我们报告了界面设计的 Hf 0.5 Zr 0.5 O 2 基异质结构的无疲劳行为。构建了一个相干的 CeO 2- x /Hf 0.5 Zr 0.5 O 2 异质界面,其中 CeO 2- x 充当“氧海绵”,能够可逆地接受和释放氧空位。这种设计有效地缓解了电极-铁电界面处的缺陷聚集,从而改善了开关特性。此外,设计了一种对称电容器架构来最大限度地减少印记,从而抑制了循环引起的定向缺陷漂移。这种双管齐下的技术可以减轻氧伏安法产生的化学/能量波动,抑制顺电相的形成和极化退化。该设计确保 Hf 0.5 Zr 0.5 O 2 基电容器具有超过 10 11 次开关循环的无疲劳特性和超过 10 12 次循环的耐久寿命,以及出色的温度稳定性和保持性。这些发现为开发超稳定的氧化铪基铁电器件铺平了道路。
硅光子学目前是紧凑和低成本光子整合电路发展的领先技术。尽管具有巨大的潜力,但某些局限性,例如由于硅的对称晶体结构仍然存在。相比之下,钛酸钡(BTO)表现出强烈的效果。在这项研究中,我们证明了在硅启用硅式平台上具有高质量转移的钛酸钡铁电混合综合调制器。BTO在硅Mach-Zehnder干涉仪上提出的杂种整合表现出EO调制,其VπL低至1.67 V·CM,从而促进了紧凑型EO调节剂的实现。BTO与SOI波导的混合整合有望为高速和高效率EO调节剂的发展铺平道路。
在散装3R-TMD晶体中,具有相同堆叠顺序的层组显示为三维双胞胎,被双边界的平面隔开。Here, we propose [10] the formation of two-dimensional (2D) electron/hole gases at twin boundaries, analyse their stable density in photo-doped structures, which appears to be in the range of n * ~8x10 12 cm -2 for electrons at both intrinsic mirror twin boundaries in bulk crystals and twisted twin boundaries in structures assembled from two thin mono-domain films.我们还预测了组装双胞胎之间的扭角值的“魔法”值,为此,累积的载体密度,n *和moiré模式之间的可相差性将促进形成强相关的电子状态,例如wigner晶体。参考文献[1] F. Ferreira等,科学报告11,13422(2021)