如果您喜欢户外跑步或骑自行车,但今天的天气状况不允许您按照自己喜欢的路线出行,该怎么办?您可以在您最喜欢的健身中心舒适的跑步机、椭圆机或健身车上复制您的户外锻炼 — 只需通过 LFconnect 应用程序“记录”您的路线,系统将允许您准确地复制锻炼负荷通过改变跑步机皮带的倾斜度或健身机踏板上的负载。您可以通过将交互式地图上的动作与您在之前一场或几场比赛中的表现进行比较来与自己竞争,或者确保您以平常的速度移动。
在哈佛医学院的这份特别报告中,医生概述了一个六步计划,可以带来持久的大脑健康改善。这些“超级6”策略包括对饮食进行简单的改变,寻找挑战思想的方法以及促进定期运动,睡眠和社交活动。通过遵循以下步骤,您可以提高智力能力,增强记忆回忆并保护自己免受与年龄有关的认知能力下降。该报告强调了认知储备的重要性,这是大脑适应和寻找新思维方式以应对挑战的能力。可以通过从事诸如难题,游戏,音乐和旅行等精神刺激的活动来建立此储备。专家还提供了管理压力,选择“舒适食品”并保持社交活动的指导。通过交互式工具和测验,读者可以测试他们的知识并跟踪其进度。该报告充满了有趣的事实和令人着迷的例子,说明大脑如何影响身体。例如,温斯顿·丘吉尔(Winston Churchill)的心理活动和健康的生活方式可能促成了他的寿命。通过在此特别报告中遵循建议,您可以采取步骤来保持敏锐的思想并过上充实,有意义的生活。该指南涵盖了认知适应性的各个方面,包括思考,学习,认可,沟通和合理的决策。强调,认知适应性对于过上自给自足的生活至关重要,并提供了有关如何实现它的实用技巧。- 步骤6:通过放松技术减轻压力。健身揭示了避开可能损害大脑健康的风险的道路。您将学习如何建立“认知储备”以应对不断变化的大脑。更重要的是,您将能够发展并确保持续的精神健身。这是您以前从未实现持久大脑健康的机会。哈佛医学院的医生已经确定了六个步骤,可以共同提高认知能力。这些步骤包括整合方法,例如最佳营养,运动,减轻压力,社交互动,睡眠和刺激活动。通过将简单的更改纳入您的日常工作中,您可以增加多年的心理耐力和活力。该计划是哈佛医学院神经病学教授的哈佛健康出版社编辑与医学博士Alvaro Pascual-Leone之间合作的结果。大脑功能(例如思考,学习,理解和记忆)来自大脑本身。没有其复杂的网络由数十亿个神经连接组成,您将无法执行简单的任务,例如阅读书籍或进行对话。要完成所有这些任务,大脑必须保持适应能力。被称为神经元的脑细胞是高度专业化的,但形成了连续变化的柔性网络。尽管您的大脑无法像其他器官那样替代细胞,但它会不断重塑其连接。这个正在进行的过程称为脑可塑性或神经可塑性。科学家现在知道,虽然大脑在一生中保持塑料,但其机制会随着时间而变化。通过低技术活动和社交联系改善精神刺激可以增强认知能力。关键是要定期挑战大脑,管理压力并建立“认知储备”。哈佛医学院的医生建议六个步骤改善认知适应性: - 步骤1:优化营养 - 步骤2:进行定期锻炼 - 步骤3:练习社交互动 - 步骤4:获得足够的睡眠 - 步骤5:进行刺激性活动,例如大脑训练游戏或精神刺激运动。认知健康涵盖了超出记忆以外的一系列认知功能,包括思考,学习,识别和健全的决策。这是奖励和独立生活的基础。通过将简单的变化纳入日常工作中,个人可以增强其心理耐力和活力。日常研磨是由许多挑战我们大脑的任务组成的。要使我们完成这些任务,我们的大脑需要高度适应。我们的脑细胞被称为神经元,是特殊的,但也非常灵活且不断变化的网络。尽管我们的大脑不像其他器官那样代替旧细胞,但它总是在它们之间的连接重塑。实际上,每秒建立数千个新连接 - 未使用的连接也被清除了!这个正在进行的过程称为脑可塑性或神经可塑性。科学家现在知道,虽然大脑在一生中保持灵活性,但其有效性随着年龄的增长而变化。要使我们的大脑保持最佳状态,我们需要从事诸如推动我们的运动和精神挑战之类的活动。因此,在65岁时拥有健康的大脑并不意味着您将拥有25岁的人的处理技巧;这意味着您的大脑对当前年龄处于最佳状态。认知健康应该是每个人的头号健康目标。我们的认知功能随着时间的流逝而令人着迷。某些医疗状况会影响大脑,包括心脏病,中风,糖尿病,肥胖,痴呆,脑损伤等。要维持大脑对我们年龄的最佳塑性能力,我们需要专注于六个关键领域:吃植物性的饮食,定期运动,足够的睡眠,管理压力,培养社交联系以及不断挑战我们的大脑。
第 3 章 留用和离职(包括退休)的健康标准,第 7 页 总则 • 3 – 1,第 7 页 适用 • 3 – 2,第 7 页 处置 • 3 – 3,第 8 页 一般政策 • 3 – 4,第 8 页 头部 • 3 – 5,第 8 页 眼睛 • 3 – 6,第 8 页 视力 • 3 – 7,第 9 页 耳朵 • 3 – 8,第 9 页 听觉 • 3 – 9,第 9 页 鼻子、鼻窦、口腔和喉咙 • 3 – 10,第 9 页 牙齿 • 3 – 11,第 10 页 颈部 • 3 – 12,第 10 页 肺、胸壁、胸膜和纵隔 • 3 – 13,第 10 页 心脏 • 3 – 14,第 12 页 血管系统 • 3 – 15,第 14 页 腹部器官和胃肠系统 • 3 – 16,第 15 页 女性生殖系统 • 3 – 17,第 16 页 男性生殖系统 • 3 – 18,第 16 页 泌尿系统 • 3 – 19,第 17 页 脊柱和骶髂关节 • 3 – 20,第 17 页 上肢 • 3 – 21,第 18 页 下肢 • 3 – 22,第 18 页 四肢其他疾病 • 3 – 23,第 19 页 皮肤和软组织 • 3 – 24,第 20 页 血液和造血组织 • 3 – 25,第 21 页 全身性疾病 • 3 – 26,第 21 页 劳力性中暑 • 3 – 27,第 22 页 冷伤 • 3 – 28,第 23 页 内分泌和代谢 • 3 – 29,第23 风湿病学 • 3 – 30,第 24 页 神经病学 • 3 – 31,第 25 页 睡眠障碍 • 3 – 32,第 26 页 学习、精神和行为健康 • 3 – 33,第 27 页 肿瘤和恶性肿瘤 • 3 – 34,第 27 页 一般和其他状况和缺陷 • 3 – 35,第 28 页 不构成身体残疾的状况和情况 • 3 – 36,第 28 页 体检
内共生生物中,其中一种生物的细胞生活在另一种生物的细胞(或器官)中,在整个生命之树中,在各种各样的分类单元中都进化了很多次,并且通常涉及不同王国生物不同生物之间的亲密相互作用[1]。通过使特殊性获得完全新颖的特征,这种以前独立物种的进化合并在进化创新中具有重要作用[2]。共生介导的创新的显着例子包括自身肉芽的增长和氮固定的增益[4]。这种创新允许共生生物入侵新的生态区[5],并导致形成了全新的生物群落,例如珊瑚礁。因此,内共生体的基础是跨越陆生,淡水和海洋栖息地的许多不同生态系统的功能[6]。通过开放新的生态机会,内共生植物可以充当关键创新,而在进化时段标准可以催化多样化和燃料适应性辐射[7-9],尽管并非总是[10]。除了它们在生物多样性中的作用外,内共生性还可以通过将功能分隔为专业结构或器官,从而使更复杂的生物体的演变[11],从而增加了有机体多功能性和模态性[12]。最重要的是,这在真核细胞的细胞器的共生起源中很明显,这些细胞的细胞器具有专门的代谢功能,如果在大量细胞质中表现出效率(或不可能)。这种提高的效率被认为提供了
等,2007)。 在过去40年中,全世界的儿童和青少年在全球范围内的平均体重指数(BMI)和肥胖症的流行率显着增加(Abarca-Gómez等,2017)。 如今,西方世界中四分之一的孩子超重或肥胖(Ng等,2014),每个超重的孩子都有成为成年人和超重成人的风险(Freedman等,2005),并且患有成人CVD(Bibbins-Domomingo等人,2007年; Graham等,2007; Graham et al。,2008; 2008; Twig et al。 此外,已经描述了儿童和青少年血压升高(BP)和高血压的升高(Yan等,2016),这与儿童超重和肥胖的增加密切相关(Kit等,2015)。 1 kg/m 2 BMI的增量占青春期儿童的收缩压(SBP)1.4 mmHg(Falaschetti等,2010)。 这两个风险因素从童年到成年期都追踪(Freedman等,2005; Oikonen等,2016),例如,诱导内皮功能障碍,并可能在后来的生活中导致CV事件(Berenson,2002; Bruyndonckx等人,2013年)。 体育活动(PA)和心肺效果(CRF)在预防CVD中起着重要作用(Jeong等,2019)。 客观测量的剧烈PA与较高的CRF呈正相关(16),但是在健康的儿童和青少年中,CRF似乎比PA更与CVD风险因素更加密切相关(Hurtig-Wennlöf等,2007; Ortega等,2008)。 在科学实践中,20米的航天飞机运行测试(SRT)是一种用于评估CRF的基于领域的方法。 即使在超重和中也一直观察到这种关联等,2007)。在过去40年中,全世界的儿童和青少年在全球范围内的平均体重指数(BMI)和肥胖症的流行率显着增加(Abarca-Gómez等,2017)。如今,西方世界中四分之一的孩子超重或肥胖(Ng等,2014),每个超重的孩子都有成为成年人和超重成人的风险(Freedman等,2005),并且患有成人CVD(Bibbins-Domomingo等人,2007年; Graham等,2007; Graham et al。,2008; 2008; Twig et al。此外,已经描述了儿童和青少年血压升高(BP)和高血压的升高(Yan等,2016),这与儿童超重和肥胖的增加密切相关(Kit等,2015)。1 kg/m 2 BMI的增量占青春期儿童的收缩压(SBP)1.4 mmHg(Falaschetti等,2010)。这两个风险因素从童年到成年期都追踪(Freedman等,2005; Oikonen等,2016),例如,诱导内皮功能障碍,并可能在后来的生活中导致CV事件(Berenson,2002; Bruyndonckx等人,2013年)。体育活动(PA)和心肺效果(CRF)在预防CVD中起着重要作用(Jeong等,2019)。客观测量的剧烈PA与较高的CRF呈正相关(16),但是在健康的儿童和青少年中,CRF似乎比PA更与CVD风险因素更加密切相关(Hurtig-Wennlöf等,2007; Ortega等,2008)。在科学实践中,20米的航天飞机运行测试(SRT)是一种用于评估CRF的基于领域的方法。即使在超重和CRF涉及人体通过肺系统吸收氧气的生理能力,随后通过循环系统将其传达给特定的肌肉,从而在体育活动期间可以供应能量(Armstrong和Van Mechelen,2017年)。在文献中,存在一些差异,这些差异是关于20 M SRT和实验室之间的有效系数确定的最大氧气吸收(VO 2 MAX),被确定为“黄金标准”(Leger和Lambert,1982; Van Mechelen et al。,1986; Boreham et al。,1986; Boreham et al。 McVeigh等人,1995年; Matsuzaka等人,2004年;尽管如此,在20 M SRT和VO 2 Max之间已记录了汇总的平均强度正相关为0.62(Hamlin等,2014)。此外,当考虑到成熟和体内脂肪质量等因素时,这种相关性趋于增加(Hamlin等,2014)。实际上,它不能直接量化Vo 2 Max,而是作为可靠的估计,并有效地反映了个人的耐力能力(Mayorga-Vega等,2015)。儿童期和青春期期间CRF的发展是高度个性化的,并且受到生长和成熟的形态和生理变化的影响,并进一步受到力量,敏捷性,运动配位和身体组成的影响(Ortega等,2008; Armstrong and Armstrong and van Mechelen,2017; Armstrong and Welsman and Welsman,2019年)。但是,文献表明,在高强度水平上进行适当的培训来增加儿童和青少年的CRF是与年龄,性别或成熟度状况无关的(Armstrong和Barker,2011年)。Studies conducted with children and adolescents have demonstrated that individuals with a high level of CRF tend to exhibit signi fi cantly lower total and lower abdominal adiposity ( González-Gross et al., 2003 ; Moreno et al., 2003 ; Ara et al., 2004 ; Ruiz et al., 2006 ; Lee and Arslanian, 2007 ; Ortega et al., 2007 ).