在量子科学中,表征强关联物质是一项日益重要的挑战,因为其结构常常被大量纠缠所掩盖。越来越明显的是,在量子领域,状态准备和表征不应分开处理——将这两个过程纠缠在一起可在信息提取方面带来量子优势。在这里,我们提出了一种结合绝热态准备和拉姆齐光谱学的方法,我们称之为“多体拉姆齐干涉法”:利用我们最近开发的计算基态和多体本征态之间的一对一映射,我们准备一个由辅助量子比特的状态控制的多体本征态叠加,让叠加演化出相对相位,然后逆转准备协议以解开辅助量子比特的纠缠,同时将相位信息重新定位到其中。然后,辅助量子比特断层扫描提取有关多体本征态、相关激发光谱和热力学可观测量的信息。这项工作证明了利用量子计算机有效探索量子物质的潜力。
他的研究兴趣包括开发新的合成生物学工具,以及工程新颖的定制遗传回路,用于感应和信息处理多个细胞和环境信号,并在不同领域的应用,例如,生物传感,生物制造和生物治疗措施。
摘要。这项创新研究研究了微通道中含有旋转的微生物的三元杂化纳米流体的流动。分析了磁场,嗜热和布朗运动效应。使用组转换方法将PDES系统转换为ODE。创新的发现检查了牛顿和非牛顿模型,这些模型来自ODES系统。几个图说明了不同参数如何影响速度谱,温度,浓度和微生物。幂律指数值在n = 3时将流体流速度提高约9%,相对于边界层中心的n = 2.5的情况,n = 4时的36%。此外,与纳米流体相比,三元杂化纳米流体的温度更高。当前的结果与研究人员的发现进行了比较,以确认所获得的结果的有效性。当prandtl编号在6到10之间时,Nusselt号码达到45.49%。
实习传播并加强了改善绿色液体混合的倡议。通过三壁图案的微流体通道实现的增强混合技术可以彻底改变药物输送,化学合成和生物技术等领域。纳米颗粒的均匀分散可以提高药物输送系统的效率,改善高级材料的合成,并可以精确操纵生物样品。该实习将为潜在的未来研究人员提供机会,以探索设计和制造三壁图案的微流体通道的应用表面工程,以增强绿色液体中纳米颗粒的混合。此外,这项实习将使学生接触微制造技术,微/生物流体设置,检测和表征工具。它还将帮助他们了解微荧光学和纳米流体/生物医学设备设计和开发/智能和可持续制造领域的潜在未来研究范围。
摘要。目前的工作研究了纳米材料和微生物的存在在可伸缩的表面上不可压缩的非牛顿sutterby液体的生物概要转向运动。液体在整个泄漏区域流动,并受均匀垂直磁场的影响。除了指数空间的热源外,欧姆和非牛顿耗散还建立了能量扩散,而纳米材料的传播则可以通过化学反应到达。物理构型被力,温度,纳米体积分数和微生物的公式以及适当的边框标准覆盖。这项工作的新方面由于考虑了粘度与温度,微生物和纳米颗粒的指数分布的考虑。此外,鉴于其较大的应用范围,微生物在流过拉伸表面的流程中的参与增加了另一个创新的特征。非线性部分差分公式的最重要格式被转换为普通的,提供合适的匹配转换器。这些公式通过四阶runge-kutta数值技术进行了审查,并支持拍摄标准。因此,实现了客观分布的算术和图形基础。检查结论,并总结了重大结果。从结果中完成了几种重要的身体。热轮廓改善了有效的因素,这是可以在各种含义中采用的出色规则。微生物的积累随着粘度变化的增加而增加,而随着小子,刘易斯数量和生物对流常数的增长,它会降低。此类发现可能对通过相似的流量期望这些微观生物的行为有用。
摘要。该研究的目的是确定添加与EG(乙二醇)结合的墨氧化物(GO)流体或水可能会增加汽车辐射器中热的转移。散热器是汽车冷却系统的重要部分;他们消散发动机产生的额外热量。常规冷却剂转运温度的容量受到限制,包括乙二醇和水。使用纳米颗粒流体可以提高传导热量的能力,纳米颗粒流体基本上是碱基中颗粒的溶液。该技术使用乙二醇和水来通过分散GO颗粒来形成纳米颗粒流体。使用实验,描述了纳米颗粒流体的弹性或热特征。接下来,使用早期版本的辐射器布置,进行了许多传热测试。与传统冷却剂相比,在利用GO纳米颗粒流体的同时,已经评估了散热器在各种功能情况下散发热量的能力。将散热器的传热效率与普通的乙二醇进行比较(或最初的结果表明与GO纳米颗粒液的添加可改善它。增加了纳米颗粒流体组合中的热导率,从而导致更有效的热量耗散。为了确保在汽车冷却机制上有效利用纳米颗粒流体,在长期暴露于升高温度时,可以进一步评估它的耐用性。本研究的持续尝试为汽车应用提供了最先进的冷却系统。结果表明,与常规冷却剂结合使用GO纳米颗粒流体有机会提高汽车散热器的热传递或一般效率。
。cc-by 4.0未经同行评审获得的未获得的国际许可证是作者/筹款人,他已授予Biorxiv的许可证,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2024年7月23日。; https://doi.org/10.1101/2024.07.22.604680 doi:biorxiv Preprint
摘要 - 支队是表面衍生的流体和岩石之间相互作用的特权区域,可能导致矿石沉积。然而,脱离的流体动力和特定的表面衍生液体达到地壳深度的方式仍然神秘。当由合成的花岗岩埋入引起的加热会增加流体的浮力,从而阻碍了它们的下降时,这个问题更加令人困惑。在这里,执行了2D水热数值模型。几何形状包括悬挂墙中的脱离和次要正常断层。灵敏度测试,以评估地形梯度,合成岩浆活性以及脱离与地壳之间的深度依赖性渗透性对比的影响。几个流动指示器,随着时间的流逝集成并与粒子跟踪结合,使我们能够突出流体循环的主要控制。我们的研究表明,表面衍生的流体在脱离区域中的内化可以通过深度的热源(例如同步型pluton)的存在来增强。次要断层是表面衍生的流体的主要渗透路径,使脱离脱离。这些断层之间已经发现了羽状热异常。岩浆入侵的动态渗透率,取决于亚果的温度,在空间和时间上重现了南部Armorican Variscan域中铀矿化的概念模型,该模型被用作示例。
摘要 - 由于技术的快速发展和开发,电子系统设计中的微型化已变得不可避免。由于较小的传热表面,热通量密度大大增加了热通量密度,因此对热管理能力提出了挑战。电子冷却中采用纳米流体似乎是实现更好的热量耗散的另一种方法。这项研究探讨了三元杂化纳米流体的可行性:Al 2 O 3:Sio 2在水中浓度不同的水中和混合物比例的水中,在蛇形冷却板中。在这项研究中,研究了0.01%的GO + Al 2 O 3:SIO 2,0.006%GO + Al 2 O 3:SiO 2和0.008%GO + Al 2 O 3:SIO 2的混合比为10:90和20:80(Al 2 O 3:Sio 2)。结果表明,与基础流体相比,纳米流体的0.01%GO + Al 2 O 3:SIO 2(10:90)纳米流体显示出最高增强的传热系数,高1.1倍。随后是0.008%GO + Al 2 O 3:SIO 2(10:90)和0.006%GO + Al 2 O 3:SIO 2(10:90),与基础流体相比,连续增强了1.03次和0.87倍的热传递系数增强。在混合比率的期限内,以10:90(Al 2 O 3:Sio 2)的表现高于20:80。为了评估采用的可行性,进行了优势比(AR)来测量热传递增强和压降效应。AR分析表明,在较低的雷诺,RE数字区域,0.01%GO + Al 2 O 3:SIO 2(10:90)三元杂交纳米流体被证明是最可行的,这是最可行的,这是由于热传递增强的压力较高。
多梁超导体中孤立的平流的超流体重量包含频带量子公制的贡献和晶格几何术语,该晶格几何术语取决于晶格中的轨道位置。由于超流动性的重量是超导体能量弹力的量度,因此它与晶格几何形状无关,导致频带的最小量子指标[phys [phys]。修订版b 106,014518(2022)]。在这里,开发了一种扰动方法来研究复合带的超流体重量及其晶格几何依赖性。当所有轨道表现出均匀的配对时,量子几何项包含每个频段的贡献和复合材料中每对频段之间的带间贡献。基于频带表示分析,它们为隔离的平流复合物的超级流体重量提供了拓扑下限。使用这种扰动方法,获得了晶格几何贡献的分析表达。它以Bloch函数的形式表示,提供了一个方便的公式,以计算多纤维超导体的超级流体重量。