阿尔茨海默氏病生物标志物对于了解疾病的病理生理学,有助于准确的诊断和识别靶向治疗至关重要。尽管生物标志物的数量继续增长,但每个人的相对效用和独特性被遗憾的理解很少,因为先前的工作通常一次仅在少数标记上计算出串行成对关系。本研究评估了27例阿尔茨海默氏病生物标志物之间的横断面关系,并确定了他们使用机器学习预测有意义的临床结果的能力。从527个社区居民志愿者那里获得了数据,该志愿者在圣路易斯华盛顿大学的Charles F.和Joanne Knight Alzheimer病研究中心招收。我们使用层次聚类进行了淀粉样蛋白β,tau [磷酸化的tau(p-tau),tau t-t-tau)的27组,CSF和血浆测量值,神经元损伤和从MRI,MRI,PET,PET,质量表光学测定法和炎症中得出的炎症。还包括神经心理学和遗传措施。基于森林的随机特征选择确定了整个队列中淀粉样蛋白宠物阳性的最强预测指标。模型还预测了整个队列和淀粉样蛋白宠物个体的认知障碍。出现了四个反映:阿尔茨海默氏病病理学(淀粉样蛋白和TAU),神经变性,AT8 AT8抗体相关的磷酸化TAU位点和神经元功能障碍。神经元功能障碍和炎症的非特异性CSF度量是淀粉样蛋白PET和认知状况的较差的预测指标。在整个队列中,CSF P-TAU181/Aβ40Lumi和Aβ42/Aβ40Lumi和CSF PT217/T217,PT111/T111,PT231/T231的CSF PT217/T217,PT111/T217的质谱测量值是强大的预测者。鉴于他们有能力在阿尔茨海默氏病的病理轨迹上表示个体,因此这些相同的标记(CSF PT217/T217,PT111/T111,P-TAU/Aβ40Lumi和T-Tau/Aβ40Lumi)在很大程度上是整个Coghort中较差的认知者的最佳预测指标。将分析限制为淀粉样蛋白阳性个体时,认知受损的最强预测指标是Tau PET,CSF T-TAU/Aβ40Lumi,P-TAU181/Aβ40Lumi,CSF PT217/217/217/217和PT205/T205。当前的工作利用机器学习来了解大量生物标志物的相互关系结构和实用性。结果表明,尽管生物标志物的数量已迅速扩大,但许多人是相互关联的,很少有强烈预测临床结果。同时研究可用生物标志物的整个语料库提供了一个有意义的框架,以了解阿尔茨海默氏病病理生物学变化,以及对哪些生物标志物在阿尔茨海默氏病临床实践和试验中最有用的见解。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
自然和我们的日常生活都被微塑料和纳米塑料所包围。他们的存在对环境和生物的健康有潜在的风险。尽管塑料在工业领域的优势(例如低成本和多功能性)最初是发明的,但它们的降解会导致不容易监测或检测的小颗粒,并且可以渗透到体内,而在本质上可能会持续数百年。他们的检测,识别和分析对于确定所有人的危险水平至关重要。全球塑料产量的兴起导致环境中微塑料和纳米塑料的患病率不断增加。缺乏标准化的处理方法使管理环境影响的努力变得复杂。目前的状态以及未来几年的预测似乎黯淡,促使科学家和立法者加强了开发和实施更好的解决方案的努力。
摘要。本文研究了麦克斯韦混合纳米流体(Cu-Al 2 O 3 /水和CuO-Ag/水)在延伸薄片上的驻点处的情况。该问题的动机在于它在提高现代传热应用中的热效率方面具有潜在重要性,这对于优化制造工艺和节能技术至关重要。因此,本研究研究了非牛顿麦克斯韦纳米液体穿过混合对流边界层(BL)并传播热量通过包含混合纳米颗粒的收缩/拉伸表面。在当前的工作中,涉及两种不同类型的混合纳米流体:Cu-Al 2 O 3 /水和CuO-Ag/水。将铜颗粒(Cu)和氧化铜颗粒(CuO)混合到Al 2 O 3 /水和Ag/水纳米流体中以研究这两种类型。流动受到均匀磁场(MF)和驻点的影响。问题源于它们增强的导热性和传热能力,这对于提高先进冷却系统和涉及驻点流的工程应用中的能源效率至关重要。通过利用适当的变换,偏微分方程 (PDE) 被转换为常微分方程 (ODE)。原型利用四阶龙格-库塔 (RK-4) 方法结合射击技术进行计算分析。当前工作的成果对驻点流具有适用意义,例如核反应堆的冷却、支持者对微电子程序的冷却、拉丝、聚合物挤出和许多工程流体动力学应用。从理论和数值上研究了所选因素对温度、速度、传热速率和表面摩擦系数的影响。发现不同混合纳米粒子的存在以及其他参数的影响对速度和温度分布都起着重要作用。此外,驻点在液体流动中产生了分离极限,从而逆转了这些流动区域之间的磁场影响。 2020 数学科目分类:76A05、76D10、76W05、80A20、65L06 关键词和短语:混合纳米流体、非牛顿麦克斯韦流体、驻点、磁流体动力学、拉伸表面
Cerebrospinal fluid-contacting neurons: multimodal cells with diverse roles in the CNS Claire Wyart 1† , Martin Carbo-Tano 1 , Yasmine Cantaut-Belarif 1 , Adeline Orts-Del'Immagine 1 and Urs L. Böhm 2 1 Institut du Cerveau (ICM), INSERM U1127, UMR CNRS 7225巴黎,索邦大学,法国巴黎。2卓越神经集群,柏林柏林Charité大学,德国。†电子邮件:claire.wyart@icm-institute.org摘要|脑脊液(CSF)是一种复杂的解决方案,可在CNS周围循环
当前的研究检查了在MHD和多孔材料的作用下,在拉伸表面上的Williamson流体流动。此外,还检查了不同特征,例如热源,粘性耗散,焦耳加热效果和化学反应的影响。还研究了溶质分层因子和温度的影响。部分微分方程用于表示问题的管理非线性方程。应用所需的相似性转换后,这些方程将转换为非线性普通微分方程的集合。Keller Box方法用于以数值方式求解结果方程。绘制速度,温度和浓度图可以检查不同参数的影响。此外,计算本地参数并将其与早期研究的发现进行了比较。结果显示兼容性。在威廉姆森,磁性和可渗透参数升高的情况下,速度的特征表现出降低的行为。在威廉姆森,磁性,辐射,焦耳加热,热源和eckert数的影响的情况下,温度的曲线表现出越来越多的趋势,而在prandtl数字中,相反的趋势是相反的趋势,热分层参数提高。在威廉姆森,磁性,渗透率参数和相反的行为的情况下,在化学反应,溶质分层,施密特数参数的情况下,检查了浓度曲线的增强。
在热工程中,传热是一个重要的领域,主要研究不同系统之间热能或热量的产生、使用、转换和交换。传热分为多种机制,例如辐射、对流、热传导和相变期间的能量传递。节能、材料可持续性、热调节和系统紧凑性都取决于有效的热传输。由于技术进步和工业流程的优化,对更高效的热交换系统的需求日益增长。微电子、电力电子、核能、空调、交通运输、航空航天、可再生能源、化学工程和其他工业流程只是使用传热的众多行业中的一小部分。提高传热率主要采用三种策略:被动、主动和组合策略。
抽象目的是将富含抗完全胶质素的神经胶质瘤激活1(LGI1)脑炎的患者与神经退行性[阿尔茨海默氏病(AD),Creutzfeldt – Jakob疾病(CJD)和原发性精神病(Psy)disororders(Psy)disororders进行比较。患有LGI1脑炎的方法是从2010年至2019年之间的法国参考中心数据库中追溯选择的,如果可以使用CSF进行生物标志物分析,包括Tau(T-TAU),磷酸化的TAU(P-TAU),Amyloid-BetaAβ1-42,Neurofilofiliments Lights(NF)(NF)(NF)作为常规实践的一部分发送以进行生物标志物测定的样本,并被正式诊断为AD,CJD和PSY,用作比较器。结果二十四名LGI1脑炎患者与39 AD,20 CJD和20 PSY进行了比较。在LGI1脑炎和PSY患者之间,在T-TAU,P-TAU和Aβ1-42水平中没有观察到显着差异。LGI1脑炎(231和43 ng/L)的T-TAU和P-TAU水平明显低于AD(621和90 ng/L,P <0.001)和CJD患者(4327和4327和4327和55 ng/L,P <0.001和P <0.001和P <0.01)。NF L浓度(2039 ng/L)与AD相似(2,765 ng/L),与PSY相比(1223 ng/L,P <0.005),但明显低于CJD(13,457 ng/l,p <0.001)。较高的NF L。可以得出CSF生物标志物水平和临床结果之间的相关性。结论LGI脑炎患者的NF L水平高于PSY,与AD相当,并且在发出癫痫发作时,提示与癫痫发作有关的轴突或突触损伤时甚至更高。
气流 – 重量轻; – 透明。 – 潮湿条件下和低环境温度下的冷凝问题。 – 需要额外的风扇进行机械通风; 流动的液体 – 透明; – 高热容量。 – 重量大; – 泄漏风险; – 需要额外的设施,例如管道和热交换器。 气凝胶 – 高绝缘性能; – 重量轻。
超短激光脉冲是诱导材料改性的有力工具 1–4。特别是在透明电介质中,超短激光脉冲可用于局部修改材料块内的化学结构、折射率、色心密度,光聚合,产生纳米光栅、表面纳米结构或内部空隙。大量应用领域受益于基础性进步:外科和生物医学应用、光子学、微流体学、高速激光制造 2,5–7。将这些应用推进到纳米结构需要数值建模的支持 8。在激光诱导的强场下,束缚电子从价带跃迁到导带 1,9,10,在价带中留下一个空穴。电子-空穴等离子体的粒子在激光场中被加速,通过碰撞电离导致自由载流子密度倍增,并可能产生致密的电子-空穴等离子体。最后,在远大于几皮秒的时间尺度上,材料内部发生热和结构事件 1 。我们的模型侧重于等离子体密度的积累,时间尺度可达几皮秒。已经开发了大量不同的模型来研究超短激光脉冲(约 100 fs)在高强度范围内(约 10 14 W/cm 2 )在介电体中的传播以及随后的电离。这些模型可分为两类。第一类是几种