脚手架跳动 - 现有铅候选人的新型脚手架的设计 - 是一项多方面且非平凡的任务,用于药物化学家和计算方法。生成的增强学习可以迭代地优化从头设计的理想特性,从而提供了加速脚手架跳跃的机会。当前方法将一代限制在预定义的分子下结构中(例如,链接器或脚手架)脚手架跳。这种受限的一代可能会限制化学空间的探索,并需要复杂的分子(DIS)装配规则。在这项工作中,我们旨在通过允许“不受约束的”,全部分子的产生来推动脚手架跳跃的增强学习。这是通过匆忙(用于限制的s caffold H反对)方法来实现的。RUSH将一代推向设计,其具有与参考分子相似的三维和药效团相似的完整分子的设计,但脚手架相似性低。在第一项研究中,我们显示了急速探索已知脚手架类似物的灵活性和有效性,并设计了与已知结合机制相匹配的脚手架跳跃的候选者。最后,Rush和两种已建立的方法之间的比较突出了其无约束分子生成的好处,以系统地实现脚手架多样性,同时保留最佳的三维特性。
Rosalind Lee、Rhonda Feinbaum 和 V. Ambros (1993) 秀丽隐杆线虫异时基因 lin-4 编码小 RNA
1 INTERNAL MEDICINE DEPARTMENT, LOZANO BLESA UNIVERSITY CLOSE HOSPITAL, ZARAGOZA, SPAIN 2 ARAGON HEALTH REESARCH INSTITUTE, ZARAGOZA, SPAIN 3 DEPARTMENT OF INTERNAL MEDICINE, MIGUEL SERVET UNIVERSITY HOSPITAL UNIT, Vigo Hospital Complex, Pontevedra, Spain 6 Rheumatology Section, El Rosario, Medellin, Colombia 7 Internal Medicine, General University Hospital Jos E M Morales Meseguer, Murcia,西班牙8自动免疫部门,西班牙巴塞罗那市Vall d'Hebron医院9号9帕兹内科医学系,拉巴斯通用大学医院医学,大学和政治医院,西班牙瓦伦西亚,瓦伦西亚11号,梅德尔·卡斯特罗·德·古蒂·埃雷斯总医院,梅德尔林,梅德尔林,哥伦比亚哥伦比亚哥伦比亚哥伦比亚省梅德尔林市梅德尔氏菌,12 Rhemumatogology Secuplation,Nitersbivelively Intural ntiverbander Intern B. Zaragoza,Zaragoza,Zaragoza通信:Borja del Carmelo Gracia Tello,内科,Lozano Blesa University诊所诊所医院,San Juan Bosco Street 15,西班牙Zaragoza,西班牙。 div>电子邮件:bcgracia@salud.aragon.es电子邮件:bcgracia@salud.aragon.es
摘要:单细胞转录组学越来越依赖于非线性模型来利用尺寸和不断增长的数据。但是,大多数模型验证都侧重于局部流动保真度(例如,平方误差和其他数据可能性指标),在对全球流形拓扑的关注很少,理想情况下应该是学习。为了解决这一问题,我们已经实施了一条强大的评分管道,旨在验证模型重现整个参考歧管的能力。Python库Cyto-Bench演示了这种方法,以及Jupyter笔记本电脑和示例数据集,以帮助用户开始工作流程。歧管概括分析可用于开发和评估模型,以了解完整的蜂窝动力网络,并在外部数据集中验证其性能。可用性:实施评分管道的Python库已通过PIP提供,可以在Github和一些Jupyter笔记本旁边检查显示其应用程序。联系人:nlazzaro@fbk.eu或toma.tebaldi@unitn.it
2007 年,科学技术部 (DST) 资助 BHU 的 DST 跨学科数学科学中心 (CIMS),用于发展贝拿勒斯印度教大学的核心组研究设施,主要用于提供数学科学方面的培训和研究,并在该地区建立核心组研究设施。目前,CIMS 以其教学、研究和学术活动而闻名,例如研讨会、培训计划、会议。CIMS 是在 BHU 数学、统计学、计算机科学和应用数学系的积极合作下成立的,但其他部门(例如物理系)的许多其他科学家也一直积极为其活动做出贡献并参与其中。
Toughcase系列VCU的基本控制系统为安全至关重要的应用而开发,可让您充满信心地将项目栩栩如生,并以最少的额外组件为生。它在大型电压范围内运行,直接驱动高电流,并构建以在各种环境条件下运行。有64针和154针配置可用,能够处理监督和域控制应用,例如动力总成,变速箱,转向,底盘,稳定性以及热或身体控制。还可以使用可选的PLC通信渠道,可以利用软件中的控制控制逻辑。
患者面临严重创伤,传染病或肿瘤引起的显着骨缺损时,通常需要手术骨移植才能完全愈合,这使得骨组织成为当今第二常见的移植组织(Migliorini等人,2021年)。传统的自体或同种异体骨移植经常遇到供体短缺,免疫排斥和对次级手术的需求(Dalipi等,2022)。骨组织工程(BTE)有可能通过促进快速骨再生来减轻这些问题。这是通过将官能细胞播种到生物相容性支架上的,在植入以促进骨骼再生之前,在体外培养到成熟。植入的支架为细胞提供了一个栖息地,可帮助营养供应,气体交换和废物清除。随着材料的降解,植入的骨细胞增殖,最终导致骨缺陷的修复(Ellermann等,2023; Jia等,2021)。BTE的关键在于鉴定高度生物相容性,迅速降解,无毒的脚手架材料,并且具有出色的孔隙率和表面生物活性。传统的支架材料,例如生物陶瓷,玻璃,金属和聚合物通常缺乏生物活性,导致诸如不良整合,磨损和腐蚀等问题,从而阻碍了功能性骨再生(Deng等,2023; Abbas et al。,2021;Pazarçeviren等,20221,20221)。虽然复合材料已经解决了单一材料的某些局限性,例如制造复杂性,脆性和对衰老的易感性,继续阻碍BTE的发展(Cannillo等,2021)。3D打印技术通过基于数字模型文件(Yang,2022)将粘合剂(例如金属或塑料)分层(例如粉末状金属或塑料)来构建对象。这项技术简化并加速了骨组织工程脚手架的制造,显着减少了生产时间,同时可以使用复杂的结构来创建个性化的脚手架,这极大地有益于患者损伤的修复(Anandhapadman等人,2022222222年)。尤其是3D生物打印的快速发展将其定位为生产组织工程脚手架材料的最有前途的技术之一,具有应对材料制备和推动材料科学和医学快速发展的主要挑战(Liu等人,2022年)。近年来,低温打印技术的应用进一步提高了脚手架的性能。Gao等。 (2022)证明,通过低温打印产生的层次多孔支架在生物矿化和骨再生方面具有显着优势。 尽管现有的评论文章广泛讨论了3D生物打印在骨组织工程中的应用,但大多数主要关注材料选择和过程优化,对挑战和潜在临床应用的潜在障碍有限分析。 这些评论通常会忽略3D生物打印与创新的生物材料和个性化结构设计相结合时如何应对骨组织工程中当前的挑战。 此外,本文探讨了如何创新Gao等。(2022)证明,通过低温打印产生的层次多孔支架在生物矿化和骨再生方面具有显着优势。尽管现有的评论文章广泛讨论了3D生物打印在骨组织工程中的应用,但大多数主要关注材料选择和过程优化,对挑战和潜在临床应用的潜在障碍有限分析。这些评论通常会忽略3D生物打印与创新的生物材料和个性化结构设计相结合时如何应对骨组织工程中当前的挑战。此外,本文探讨了如何创新回应,本文提供了3D生物打印的临床应用的全面摘要,分析了诸如印刷材料的可控降解性,与骨组织的机械兼容性以及植入后生物相容性的问题。
摘要8尽管我们预测由于氨基酸取代为9的蛋白质稳定性变化的能力取得了很大的进步,但在预测蛋白质的绝对稳定性10的方法上的进展速度较慢。在这里,我们展示了如何利用蛋白质序列的生成模型来预测绝对蛋白质的稳定性。我们基准在一系列蛋白质12中进行预测,并发现对绝对稳定性13的平均误差为1.5 kcal/mol,相关系数为0.7,跨一系列天然的小型中间大小的蛋白质,直至CA。150个氨基酸残基。 我们14分析当前局限性和未来方向,包括该模型如何对15个预测构象自由能有用。 我们的方法易于使用,并且可以通过16个在线实施自由使用。 17150个氨基酸残基。我们14分析当前局限性和未来方向,包括该模型如何对15个预测构象自由能有用。我们的方法易于使用,并且可以通过16个在线实施自由使用。17