机械传导是所有生物体的一个关键特性,它可以调节细胞对外部机械刺激的反应行为。鉴于声带的高度活动性,有人假设机械传导对其组织稳态有显著贡献。最近的研究已经在声带上皮中发现了机械敏感蛋白,支持了这一假设。语音治疗涉及声带的调动,旨在恢复发声功能和恢复稳态。然而,由于语音治疗技术多种多样,建立特定机械刺激和治疗效益之间的直接因果关系具有挑战性。在研究人类的生物学效益时,这一挑战进一步加剧。如果不显著损害声带的振动特性,就无法对声带组织进行活检。相反,使用声带模拟生物反应器的研究表明,对声带成纤维细胞进行机械刺激可导致高度异质的反应,具体取决于诱发振动的性质和参数。这些反应可以在生理层面上帮助或阻碍声带振动。未来的研究需要确定对声带功能具有生物学益处的特定机械参数。
高维脑电图 (EEG) 协方差矩阵的维数降低对于在脑机接口 (BCI) 中有效利用黎曼几何至关重要。在本文中,我们提出了一种新的基于相似性的分类方法,该方法依赖于 EEG 协方差矩阵的维数降低。传统上,通过将原始高维空间投影到一个低维空间来降低其维数,并且仅基于单个空间学习相似性。相反,我们的方法,多子空间 Mdm 估计 (MUSUME),通过解决所提出的优化问题获得多个可增强类可分性的低维空间,然后在每个低维空间中学习相似性。这种多重投影方法鼓励找到对相似性学习更有用的空间。使用高维 EEG 数据集(128 通道)进行的实验评估证实,MUSUME 在分类方面表现出显著的改进(p < 0.001),并且显示出超越仅依赖一个子空间表示的现有方法的潜力。
对局部皮质折叠模式的研究表明,其与精神疾病以及认知功能存在关联。尽管目前已有可视化 3D 皮质折叠的工具,但手动分类局部脑沟模式仍然是一项耗时且繁琐的任务。事实上,折叠的 3D 可视化有助于专家识别不同的脑沟模式,但折叠变异性非常高,以至于区分这些模式有时需要定义复杂的标准,这使得手动分类变得困难且不可靠。但是,评估这些模式对皮质功能组织的影响可能会受益于对大型数据库的研究,尤其是在研究罕见模式时。本文提出了几种自动分类折叠模式的算法,以便扩展和确认此类大型数据库上的形态学研究。提出了三种方法,第一种方法基于支持向量机 (SVM) 分类器,第二种方法基于非局部图像块估计器评分 (SNIPE) 方法,第三种方法基于 3D 卷积神经网络 (CNN)。这些方法足够通用,适用于各种折叠模式。它们在两种目前没有自动识别方法的模式上进行了测试:前扣带皮层 (ACC) 模式和电源按钮标志 (PBS)。这两种 ACC 模式几乎同样存在,而 PBS 在一般人群中是一种特别罕见的模式。提出的三种模型在 ACC 模式分类中实现了大约 80% 的平衡准确率,在 PBS 分类中实现了大约 60% 的平衡准确率。基于 CNN 的模型由于其执行速度快,更适合 ACC 模式分类。然而,基于 SVM 和 SNIPE 的模型在管理 PBS 识别等不平衡问题方面更有效。
在遗传诊断和生物化学领域等。使用光合交联的核酸操纵具有以下特征:1)可以在多种条件下使用它,而无需限制pH,温度,盐强度等。2)不需要添加试剂,而3)3)它可以轻松地通过光辐射的时间和能量来控制反应。我们已经报道了各种照片的人造核酸,以及代表性的光杂交链链球菌(CNV K)(CNV K),可以通过辅助DNA或RNA链中的吡啶胺或胞嘧啶等嘧啶基碱(以366的366 Irladions in of thymine或rna strands中的)进行光子交联。此外,可以通过312 nm的照射诱导光电反应,并且可以使用光可逆的操作。与以前已知的牛cor烯和香豆素相比,CNV K及其改进的光交联CNV D具有很高的光反应性,并且已经在市场上。因此,在本演讲中,我打算介绍此超快照片的开发 -
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年1月13日。 https://doi.org/10.1101/2023.12.22.573145 doi:Biorxiv Preprint
生物膜是不对称结构,其不对称性是由于双层小叶中脂质身份的差异以及膜上脂质和小分子的不均匀分布而产生的。蛋白质还可以根据其形状,序列和与脂质的相互作用来诱导和调节膜不对称。由于天然膜系统的复杂性以及在体外产生相关的不对称双层系统而难以理解,膜不对称如何影响大分子行为。在这里,我们提出了一种方法,该方法利用了跨膜β-桶外膜蛋白OPMA的有效,单向折叠,以创建具有已知方向的蛋白质诱导的蛋白诱导的偶极子(由已知方向的蛋白诱导的偶极子)(由序列变异引起的序列变异,该序列变异构成了OMPA回路)。然后,我们将不同的OMPA变体的折叠动力学和稳定性表征为这些蛋白质脂质体。我们发现,折叠OMPA的主要序列和折叠发生的膜的偶极子都在调节折叠速率的情况下起着重要作用。至关重要的是,我们发现,通过将折叠蛋白上的电荷与膜偶极子互补匹配,可以增强折叠动力学和折叠OMPA的稳定性。结果暗示,细胞如何利用膜包裹的蛋白质中环电荷来操纵膜环境以进行适应和存活。
清晰的沟通是紧急情况下或完成关键任务时团队成员之间进行有效沟通的一种方法。清晰的沟通最初用于军事和航空领域,以实现有效沟通,后来被人类医学和兽医学所采用,特别是在复苏方面(1、2)。在人类复苏和创伤医学以及其他干预措施期间,清晰的沟通对于避免潜在的致命错误至关重要(3、4)。事实证明,诸如清晰的沟通之类的改进沟通可以提高人类医疗团队在模拟训练和现实紧急情况下的表现(5-7)。清晰的沟通包含三个部分:(第 1 部分)发送者请求指定接收者采取行动;(第 2 部分)接收者以声音确认消息;(第 3 部分)发送者以声音确认收到消息(8、9)(图 1)。成功的 CLC 有助于减少因沟通不畅而导致的失误 ( 10 ),这不仅是因为可以识别出被分配了命令的指定接收者,还因为让接收者复述请求。CLC 还有助于团队建立共享的心理模型,正如基于证据的人类医疗团队绩效框架所建议的那样 ( 11 )。兽医复苏重新评估运动 (RECOVER) CPR 计划表明,在 CPR 期间使用 CLC 可以提高团队绩效 ( 1 )。尽管有这些基于证据的建议,但人类和兽医研究均表明,在现实危急事件和研究观察环境中,CLC 的使用率出奇地低 ( 6 , 12 )。一家兽医教学医院的研究报告称,在 22 起事件中只有 6 起 (27%) 使用 CLC ( 13 )。这些数据表明,CLC 可能是一项难以教授的技能。由于目前的沟通培训技术缺乏效力,因此有必要研究新技术。兽医 CPR 模拟训练课程不仅可以培养实践和技术技能,还可以培养 CLC 等沟通技能。RECOVER CPR 计划的结论是,团队沟通培训可以提高 CPR 团队的效率 (1)。在人类医学领域,最近的研究 (14,15) 报告称,在训练课程中,当首席复苏师蒙上眼睛时,CLC 会增加。据作者所知,目前还没有研究在 CPR 训练期间检查兽医团队的 CLC。本研究的目的是调查在兽医 CPR 模拟课程中蒙上首席复苏师的眼睛对完成 CLC 数量的影响。