对局部皮质折叠模式的研究表明,其与精神疾病以及认知功能存在关联。尽管目前已有可视化 3D 皮质折叠的工具,但手动分类局部脑沟模式仍然是一项耗时且繁琐的任务。事实上,折叠的 3D 可视化有助于专家识别不同的脑沟模式,但折叠变异性非常高,以至于区分这些模式有时需要定义复杂的标准,这使得手动分类变得困难且不可靠。但是,评估这些模式对皮质功能组织的影响可能会受益于对大型数据库的研究,尤其是在研究罕见模式时。本文提出了几种自动分类折叠模式的算法,以便扩展和确认此类大型数据库上的形态学研究。提出了三种方法,第一种方法基于支持向量机 (SVM) 分类器,第二种方法基于非局部图像块估计器评分 (SNIPE) 方法,第三种方法基于 3D 卷积神经网络 (CNN)。这些方法足够通用,适用于各种折叠模式。它们在两种目前没有自动识别方法的模式上进行了测试:前扣带皮层 (ACC) 模式和电源按钮标志 (PBS)。这两种 ACC 模式几乎同样存在,而 PBS 在一般人群中是一种特别罕见的模式。提出的三种模型在 ACC 模式分类中实现了大约 80% 的平衡准确率,在 PBS 分类中实现了大约 60% 的平衡准确率。基于 CNN 的模型由于其执行速度快,更适合 ACC 模式分类。然而,基于 SVM 和 SNIPE 的模型在管理 PBS 识别等不平衡问题方面更有效。
主要关键词