纳米颗粒在接口处。没有纳米颗粒,系统将在系统中发生宏观分离,这两个阶段将根据其密度而定。[5,6] 2000年代初期证明了Bijels生产的第一个程序。第一个实验成功的方法是所谓的热旋缺失分解。[7]在2015年,Haase和同事改善了这种方法,开发了一种导致旋律分解的方法,该方法依赖于从三元混合物中去除溶剂的方法。[8]在这种情况下,将两个易碎的液体与溶剂混合在一起,该溶剂具有使它们相互溶于的能力。将所谓的混合物注入能够提取溶剂的连续相中,其突然去除会诱导两个剩余流体的旋律分解。最近,Clegg Research Group定义了一种越来越简单,更快的生产协议,涉及所涉及的组件之间的直接混合。[9]以这种策略分散到两种不混溶的液体中,需要一些表面活性剂。以这种方式,可以偏爱面部表面的不同局部曲率并稳定结构。与旋律分解不同,这里的比杰尔是通过应用高剪切速率形成的,因此,在初始阶段,产生了二元混合物的液滴。去除剪切物后,粗糙的过程开始将颗粒[1]在接口处捕获[1],直到融合融合为止。最近的Huang等人。同时,表面活性剂施加了液态液接触表面的局部曲率,有助于形成特征性的双连续结构。[1,2,10]仅使用简单的涡流混合简化了生产方法。这样做,他们采用了不同的分子量表面活性剂的组合来稳定不同的局部曲率,以与两个液相之间的界面稳定。在这种情况下,形成比耶尔的唯一必要条件是使用具有不同分子量的聚合物的混合物和足够高的颗粒来形成双连续性的互面膜间堵塞的乳胶凝胶。在最近几年中,比杰尔(Bijels)在许多工业领域表现出了有希望的应用,例如电池,燃料电池和许多其他领域,其中具有控制结构的多相材料引起了任何关注。[11]从医学角度来看,使用Bijels的主要优势居住在可能获得系统
摘要:本文解决了香草视觉变压器中与多头自我注意(MHSA)相关的高计算/空间复杂性。为此,我们提出了层次MHSA(H-MHSA),这是一种新颖的方法,以层次的方式计算自我注意力。具体来说,我们首先将输入图像分为通常完成的补丁,每个补丁都被视为令牌。然后,提议的H-MHSA学习本地贴片中的令牌关系,作为局部关系建模。然后,将小斑块合并为较大的贴片,H-MHSA对少量合并令牌的全局依赖性建模。终于,将本地和全球专注的特征汇总为具有强大表示能力的功能。由于我们仅在每个步骤中计算有限数量的令牌的注意力,因此计算负载大大减少。因此,H-MHSA可以在不牺牲细粒度信息的情况下有效地模拟令牌之间的环境关系。与H-MHSA模块合并,我们建立了一个基于层次的变压器网络的家族,即HAT-NET。为了证明帽子网络在场景中的优越性,我们就基本视觉任务进行了广泛的实验,包括图像分类,语义分割,对象titection和实例分段。因此,HAT-NET为视觉变压器提供了新的视角。代码和预估计的模型可在https://github.com/yun-liu/hat-net上找到。
亲自代表 PA Consulting Group Ltd(包括母公司、子公司、合作伙伴和客户)游说英国政府或其任何独立机构;您也不应直接或间接地利用您在政府和/或部长办公室的联系来影响政策、获得业务/资金或以其他不公平的方式使 PA Consulting Group Ltd(包括母公司、子公司、合作伙伴和客户)获得优势;● 自您在部长办公室的最后一天起两年内,您不应提供
摘要 - 脑肿瘤诊断是一项具有挑战性的任务,但对于计划治疗以停止或减慢肿瘤的生长至关重要。在过去的十年中,卷积神经网络(CNN)在医学图像中肿瘤的自动分割中的高性能急剧增加。最近,与CNN相比,视觉变压器(VIT)已成为医学成像的稳健性和效率的核心重点。在本文中,我们提出了一个新颖的3D变压器,称为3D catbrats,用于基于最先进的SWIN变压器的磁共振图像(MRIS),用于使用残留块和通道注意模块的最先进的SWIN变压器进行磁共振图像(MRI)。在Brats 2021数据集上评估了所提出的方法,并实现了在验证阶段超过当前最新方法的平均骰子相似性系数(DSC)的定量度量。索引项 - CNN,变形金刚,VIT,语义段
使用一个野外收集的标本进行测序。DNA提取。根据制造商的说明,使用Illumina Truseq套件构建了配对的测序库。该库是在配对端,2×150 bp格式的Illumina Hi-Seq平台上进行测序的。用三型V0.33(Bolger,Lohse和Usadel 2014)修剪了所得FASTQ文件的适配器/引物序列和低质量区域。修剪序列由黑桃v2.5组装(Bankevich,Nurk,Antipov等2012)随后使用Zanfona V1.0(Kieras 2021)进行完成步骤,以基于相关物种中保守的区域加入附加的重叠群。
由于Ahpra的立场而导致大量从业人员是通过停职来拒绝了他们的合法权利,使成千上万的健康从业人员被迫拒绝拒绝对他们的轻拍的知情同意,但更令人不安的是,一些澳大利亚人因这些救护而受到了侵害,但由于这些被遗忘而受到了侵害,但由于这些被遗忘而受到了严重伤害,但由于这些疫苗而受到了严重伤害,因此遭受了侵害,因为这些疫苗受到了侵害,并因这些疫苗而受到了侵害。执行AHPRA的基于不利的政策决策,该决策继续针对医生将近3年。国家法律规定,必须及时进行调查,但是一些医生有法院案件,并取消了诉讼的持续,从而对他们的生计和家庭施加了极大的压力,一些从业人员遭受了虐待行为,而另一些则夺走了他们的生命。2当考虑.onl'y犯罪时,这显然是最不令人满意的结果,这是医生的职责和/或努力通过向患者提供所需的信息,以便他们可以足够了解注射以提供有效和知情的同意:
➢j和l是损失 /错误 /成本功能的通常符号,即< / div>模型预测的内容与根据地面真理预测的内容之间的区别。
MRI超级分辨率(SR)和Denoising任务是深度学习领域的挑战,传统上被视为具有分隔的配对培训数据的不同任务。在本文中,我们提出了一种创新的方法,该方法使用单个深度学习模型同时解决这两个任务,从而消除了在培训期间对明确配对嘈杂和干净的图像的需求。我们提出的模型主要是针对SR训练的,但在超级分辨图像中也表现出显着的噪声清洁功能。而不是将与频率相关操作引入常规过程的常规方法,我们的新方法涉及使用以频率信息歧视器为指导的GAN模型。为了实现这一目标,我们利用3D离散小波变换(DWT)操作的功率作为GAN框架内的频率结合,用于磁共振成像(MRI)数据的SR任务。特别是我们的分配包括:1)基于残差 - 残基连接块的3D发电机; 2)将3D DWT与1×1卷积的3D DWT集成到3D UNET内的DWT+CORV单元中; 3)训练有素的模型用于高质量的图像SR,并伴随着Intrinsic denoising过程。我们将模型“ deno诱导的超分辨率gan(disgan)”配音,原因是其对SR图像产生和同时降解的双重影响。与传统的培训SR和Deno Task作为单独模型的传统方法背道而驰,我们提出的disgan仅受到SR任务的培训,但在DeNoising方面也取得了出色的表现。我们的代码可用 -该模型经过了来自人类连接组项目(HCP)的数十个受试者的3D MRI数据的培训,并对先前看不见的MRI数据进行了进一步评估,这些MRI数据来自患有脑肿瘤和癫痫的受试者,以评估其denosis和SR性能。
摘要 — 在三相四线低压配电系统中,不平衡负载会导致中性电流 (NC) 形成环路,从而导致功率损耗增加和中性电位变化。与传统电力变压器相比,智能变压器 (ST) 具有严格的电流限制以避免过流。然而,其在下游低压电网电压调节方面的优势可以提供调节过度 NC 的能力。本文提出了一种闭环 NC 优化控制,一方面,在满足标准 EN 50160 要求的正常运行中最小化 NC 电流,另一方面,在极端情况下抑制 NC 电流以避免 ST 过流损坏。根据曼彻斯特地区三相四线配电网,通过硬件在环设置和基于不平衡负载曲线下的 350kVA、10kV/400V、ST 供电配电网的案例研究,通过实验测试验证了所提出的控制策略。结果清楚地证明了所提出的NC优化控制策略对NC抑制和最小化的有效性和灵活性。
在这项工作中,我们提出了一种新颖的歧视性框架,用于灵巧的掌握生成,称为d外部g rasp tr ansformer(dgtr),能够通过仅使用一个向前的通行方式处理对象点云来预测一组可行的抓握姿势。我们将敏捷的掌握生成作为设定的预测任务,并为其设计一个基于变压器的握把模型。但是,我们确定此设置的预测范式在灵活的掌握领域遇到了几种优化的挑战,并导致限制性能。为了解决这些问题,我们提出了培训和测试阶段的渐进策略。首先,提出了动态静态匹配训练(DSMT)策略,以增强训练阶段的光学稳定性。第二,我们使用一对对抗性损失来实现对抗平衡的测试时间适应(ABTTA),以提高测试阶段的掌握质量。dexgraspnet数据集的实验结果证明了DGTR可以预测具有高质量和多样性的灵活掌握姿势的能力。值得注意的是,在保持质量高的同时,DGTR Sigsigs所预测的Grasp的多样性明显优于先前的多个指标,而没有任何数据预处理。代码可在https://github.com/isee-laboratory/dgtr上找到。