我们提出了G en 3c,这是一种具有精确的C amera c onTrol和暂时3D C的生成视频模型。先前的视频模型已经生成了现实的视频,但是它们倾向于利用少量3D信息,导致不一致的情况,例如弹出和不存在的对象。相机控制(如果完全实现)是不精确的,因为相机参数仅是对神经网络的输入,然后必须推断视频依赖相机。相比之下,G en 3c由3D缓存:通过预测种子图像的像素深度或先前生成的框架获得的点云。生成下一个帧时,G en 3c由用户提供的新摄像头轨迹在3D缓存的2D渲染上进行条件。至关重要的是,这意味着G en 3c都不必须记住它的预期
持续学习(CL)构成了深层神经网络(DNN)的重大挑战,这是由于灾难性的忘记在引入新的任务时对先前获得的任务的灾难性忘记。人类在学习和适应新任务的情况下擅长而无需忘记,这是通过大脑中的融合学习系统归因于抽象体验的彩排的能力。这项研究旨在复制和验证Birt的发现,Birt的发现是一种新型方法,利用视觉变压器来增强表示练习的代表性,以进行持续学习。birt在视觉变压器的各个阶段引入了建设性噪声,并与工作模型的指数移动平均值(以减轻过度拟合并增强鲁棒性)相加。通过复制Birt的方法,我们试图验证其声称的改善,比传统的原始图像排练和香草代表对几个具有挑战性的CLENCHM分析进行排练。此外,这项研究还研究了Birt对自然和对抗性腐败的记忆效率和稳健性,旨在增强其实际适用性。复制将提供对原始论文中介绍的思想的可这种可总合性和普遍性的关键见解。
支原体肺炎是一种细菌,可引起上呼吸道和非典型肺炎感染[1]。M.肺炎感染会影响皮肤,并可能导致多达25%的病例粘膜受累,可能导致多形性红斑(EM)和Stevens-Johnson综合征(SJS)/毒性表皮坏死分析(10)[2]。M.肺炎在40岁以下的人群中更为普遍。M.肺炎感染可能全年发生,但每三到七年就会发生一次社区爆发。肺炎支原体的临床表现包括温和的症状,例如发烧,咳嗽,喉咙痛,不适和头痛,而EM会出现皮肤上的靶标病变,通常伴有粘膜受累,例如口腔溃疡和结膜炎。大约30%的小儿病例发生了眼部受累。在大多数情况下,症状是轻度的,但在严重的情况下,肺炎支原体会引起严重的并发症:急性肺炎,脑炎,肾功能障碍和溶血性贫血,尤其是在老年人或免疫繁殖的人群中。传播是通过咳嗽或打喷嚏或直接与感染的鼻或喉咙放电的呼吸液滴发生的,或者可能通过受污染的物品间接发生。孵育期的范围为两到三周,大多数情况下轻度病例会自发地解决,但是如果它们变得严重,则会开处方抗生素治疗[1]。然而,5%至10%的肺炎开发症患者可能发育非典型肺炎[1]。然而,5%至10%的肺炎开发症患者可能发育非典型肺炎[1]。
Marion Vincent,SébastienVanstavel,CédricPatin,Sandrine Mejias,Anahita Basirat。大脑对词汇证明性和语音良好形式的反应,如快速周期性的视觉刺激所揭示的那样。大脑和语言,2022,232,pp.105150。10.1016/j.bandl.2022.105150。hal-04377160
摘要 - 这项研究提出了卷积神经网络(CNN)的混合模型和用于预测和诊断心脏病的变压器。基于CNN检测本地特征的强度以及变压器在感知全球关系方面的高能力,该模型能够从高维生的生活历史数据中成功检测心脏病的危险因素。实验结果表明,在精度,精度和回忆中,提出的模型胜过传统基准模型,例如支持向量机(SVM),卷积神经网络(CNN)和长短期记忆网络(LSTM)。这表明了其处理多维和非结构化数据的强大能力。为了验证模型的有效性,进行了某些部分的实验,实验的结果表明,同时使用CNN和变压器模块来增强模型很重要。本文还讨论了将来的研究中纳入其他特征和方法,以增强模型的性能并使其能够在不同条件下有效运行。本研究提出了使用机器学习预测心脏病的新颖见解和方法,尤其是在个性化医学和健康管理中。
准确的分子特性预测对于药物发现和计算化学至关重要,促进了有希望的化合物并加速治疗性发育的鉴定。传统的机器学习以高维数据和手动特征工程的速度失败,而现有的深度学习方法可能不会捕获复杂的分子结构,而留下了研究差距。我们引入了深CBN,这是一个新型框架,旨在通过直接从原始数据中捕获复杂的分子表示来增强分子性质预测,从而提高了准确性和效率。我们的方法论结合了卷积神经网络(CNN)和biforter注意机制,同时采用了前向算法和反向传播。该模型分为三个阶段:(1)功能学习,使用CNN从微笑字符串中提取本地特征; (2)注意力完善,通过向前前锋算法增强的Biforter模块捕获全球环境; (3)预测子网调整,通过反向传播进行微调。对基准数据集的评估 - 包括TOX21,BBBP,SIDE,Clintox,Clintox,Bace,HIV和MUV,表明深-CBN达到了近乎完美的ROC-AUC分数,显着超过了最好的State-Art-Art方法。这些发现证明了其在捕获复杂分子模式的有效性,提供了一种强大的工具来加速药物发现过程。
使用高级机器学习(ML)的物理信息建模(PIM)代表混凝土技术领域的范式转变,提供了科学严谨和计算效率的有效融合。通过利用基于物理原理和数据驱动算法之间的协同作用,PIM-ML不仅简化了设计过程,还可以增强混凝土结构的可靠性和可持续性。随着研究继续完善这些模型并验证其性能,他们的采用有望彻底改变整个全球建筑项目中混凝土材料的设计,测试和利用。在这项研究工作中,一项广泛的文献综述,生成了一个全球代表性数据库,用于沉迷于可回收骨料混凝土的裂纹拉伸强度(FSP)。测量并列出了研究的混凝土组件,例如C,W,NCAG,PL,RCAG_D,RCAG_P,RCAG_WA,VF和F_TYPE。将收集的257个记录分为200个记录(80%)的培训集和57个记录(20%)的验证集(20%),以与数据库的更可靠分区相符。使用“ WEKA数据挖掘” 3.8.6版创建的五种高级机器学习技术用于预测FSP,并且还使用了Hoffman&Gardinger方法和性能指标分别评估变量和ML模型的灵敏度和性能。结果表明,KSTAR模型证明了模型之间的性能和可靠性水平最高,以0.96的r 2为0.96,精度为94%。其RMSE和MAE在0.15 MPa时均较低,表明预测和实际值之间的偏差很小。其他指标,例如WI(0.99),NSE(0.96)和KGE(0.96),进一步证实了该模型的效率和一致性,使其成为实用应用的最可靠工具。的灵敏度分析还表明,水含量(W)在40%处发挥了最大的影响,这表明混合物中的水量是实现最佳拉伸强度的关键因素。这强调了需要仔细的水管理以平衡可持续混凝土生产中的可行性和力量。粗大的天然聚集物(NCAG)具有38%的实质影响,表明其在维持混凝土混合物的结构完整性中的重要作用。
摘要:当前的停车援助和监测系统合成鸟类视图(BEV)图像,以提高驱动程序的可见度。这些BEV图像是使用称为“逆透视图”(IPM)的流行透视转换创建的,该转换将其投射到FishEye摄像头捕获的环绕视图图像的像素上。然而,IPM在准确地表示高度和接缝的对象方面面临挑战,因为它依赖于刚性几何变换,因此将预计的环绕视图缝合在一起。为了解决这些局限性,我们提出了Bevgan,这是一种新型的几何形状引导的条件生成副本网络(CGAN)模型,将多尺度鉴别器与基于变形金刚的生成器相结合,该生成器利用Fisheye摄像机校准和注意力机械机制,以隐含地模拟该视图之间的几个几何形式的变换。实验结果表明,在图像保真度和质量方面,Bevgan的表现优于IPM和最先进的跨视图生成方法。与IPM相比,我们报告了 + 6的改进。在PSNR上的2 dB,MS-SSIM上的 + 170%在描绘停车场和驾驶场景的合成数据集上进行评估。此外,还通过零射推理证明了Bevgan在现实世界中的图像上的概括能力。
我们报告了能够对齐多个核苷酸序列的卷积变压器神经网络。神经网络基于图像分割中常用的U-NET,我们采用了该神经网络将其用于将未对准序列转换为对齐序列的U-NET。对于对齐场景,我们的ALI-U-NET神经网络已经接受过培训,在大多数情况下,它比MAFFT,T-Coffee,Muscle和Clustal Omega等程序更准确,同时比单个CPU核心上的类似准确的程序快得多。的限制是,神经网络仍针对某些对齐问题进行了专门训练,并且对于以前从未见过的差距分布而表现不佳。此外,该算法当前与48×48或96×96核苷酸的固定尺寸比对窗口一起工作。在此阶段,我们将研究视为概念证明,确信目前的发现可以扩展到更大的一致性,并在不久的将来将其扩展到更复杂的一致性方案。
心脏数字双胞胎(CDTS)of er个性化的内部心脏表示,以推断与心脏机制相关的多尺度特性。CDT的创建需要有关躯干上电极位置的精确信息,特别是对于个性化心电图(ECG)校准。然而,当前的研究通常依赖于对ECG电极定位的躯干成像和手动 /半自动方法的额外获取。在这项研究中,我们提出了一种新颖和E FFI Cient拓扑知识模型,以完全自动从2D临床标准心脏MRIS中提取个性化的ECG标准电极。具体来说,我们从心脏MRI中获得稀疏的躯干轮廓,然后从轮廓中定位12铅ECG的标准电极。心脏MRI旨在成像心脏而不是躯干,从而导致成像中不完整的躯干几何形状。为了解决错过的拓扑结构,我们将电极合并为关键点的子集,可以将其与3D躯干拓扑明确对齐。实验结果表明,所提出的模型优于耗时的常规模型投影方法(Euclidean距离:1。24±0。293厘米与1。48±0。362 cm)和E FFI效率(2 S vs. 30-35分钟)。我们进一步证明了使用检测到的电极进行硅内ECG模拟的e FF具有效果,从而突出了它们创建准确和E ffi cient CDT模型的潜力。该代码可在https://github.com/lileitech/12Lead_ecg_electrode_localizer上获得。©2025 Elsevier B. V.保留所有权利。