•始终运行最新版本的电路pypython和库•我必须继续使用Circuitppython 7.x或更早。在哪里可以找到兼容的库?• macOS Sonoma before 14.4: Errors Writing to CIRCUITPYmacOS 14.4 - 15.1: Slow Writes to CIRCUITPY • Bootloader (boardnameBOOT) Drive Not Present • Windows Explorer Locks Up When Accessing boardnameBOOT Drive • Copying UF2 to boardnameBOOT Drive Hangs at 0% Copied • CIRCUITPY Drive Does Not Appear or Disappears Quickly • Device Errors or Problems on Windows • Serial Console in Mu Not Displaying Anything • code.py Restarts Constantly • CircuitPython RGB Status Light • CircuitPython 7.0.0 and Later • CircuitPython 6.3.0 and earlier • Serial console showing ValueError: Incompatible .mpy file • CIRCUITPY Drive Issues • Safe Mode • To erase CIRCUITPY: storage.erase_filesystem() • Erase CIRCUITPY Without Access to the REPL • For the specific boards listed below: • For SAMD21 non-Express boards that have UF2引导加载程序:•对于没有UF2引导程序的SAMD21非Express板:•在SAMD21非Express Board上用完文件空间•删除某些内容!•使用标签•在MacOS上?•防止和删除MacOS隐藏文件•在MacOS上复制文件而不创建隐藏文件•其他节省空间的提示•设备已锁定或引导循环
奇异果藤蔓衰落综合征(KVD)的特征是严重的根系障碍,导致冠层不可逆地枯萎。植物通常会因第一个地上症状的出现而迅速崩溃,即使在接下来的季节也没有恢复。自2012年首次爆发以来,综合征在意大利的不同领域(意大利的不同地区)一直对奇异果产量产生负面影响。迄今为止,尚未找到一个独特的,常见的因果因素,综合征称为多因素。在本文中,我们研究了与在三种不同的地下矩阵/隔室(土壤,根际和根)中开发KVD相关的整个生物群落(真菌,细菌和Oomycetes)。采样。要解决综合征的多因素性质,并研究了非生物因素在塑造这些群落中的潜在作用,还对土壤进行了物理化学分析。这项研究调查了组成微生物组以及生物和非生物因素之间的分类群体之间的关联。营养不良被认为是塑造KVD微生物群落的驾驶事件。从这项研究中获得的结果突出了卵属植物属的作用,这主要导致了卵菌的组成,尽管它也存在于健康的基质中。与KVD相关的根际群落是由不植物过程驱动的。细菌和真菌群落都导致属的丰富度高,并且与采样位点和基质高度相关,并强调了多个位置在地理上和空间上采样的重要性。此外,对患病的根际对关联网络的分析表明,存在潜在的跨王朝竞争,这是腐生,卵形和细菌之间植物来源碳的潜在竞争。
1.54 英寸 IPS TFT 显示屏,分辨率为 240x240,可显示文本或视频 立体声扬声器端口用于音频播放 - 文本转语音、警报或创建语音助手。 立体声耳机输出,可通过立体声系统、耳机或有源扬声器播放音频。 立体声麦克风输入 - 非常适合制作您自己的智能家居助手 两个 3 针 JST STEMMA 连接器,可用于连接更多按钮 (http://adafru.it/4431)、继电器 (http://adafru.it/4409) ,甚至一些 NeoPixels!(http://adafru.it/3919) STEMMA QT 即插即用 I2C 端口 (https://adafru.it/Ft4) ,可与我们的任何 50+ I2C STEMMA QT 板 (https://adafru.it/NmD) 一起使用,或可用于连接到 Grove I2C 设备适配器电缆(http://adafru.it/4528)。5 向操纵杆 + 按钮用于用户界面和控制。三个 RGB DotStar LED 用于彩色 LED 反馈。
蔓越莓水果腐烂(CFR)是一种主要的疾病复合体,显着影响蔓越莓作物,导致大量产量损失。在过去十年中,CFR越来越有问题,尤其是在高产和新品种中,据报道损失范围从50%到100%。此外,蔓越莓行业还面临着对使用广谱杀菌剂(例如Chlorothalonil和Mancozeb)的限制,因此需要探索替代管理策略。这项研究于2021年至2024年在马萨诸塞大学 - 阿默斯特蔓越莓站进行,评估了Frac组7、9和12的新型杀菌剂。单独测试并与硫代蛋白(FRAC 11)结合了活性成分 - 苯并叶二氟,pydi lumetofen,cyprodinil和流胞菌。这些杀菌剂在降低CFR发病率和提高产量方面的效率在蔓越莓品种“ Demoranville”,“ Ben Lear”和“ Stevens”和“ Stevens”上评估,并在Bloom早期和晚期阶段进行了应用。在2021、2023和2024中观察到果腐发生率和产量的显着差异。处理含有Pydi umetofen,pydi limetofen&fludioxonil和Benzovindi Floupyr的处理,当与硫代蛋白结合使用时,始终导致较低的腐烂率和较高的产率。含有cyprodinil&fludioxonil加上阿佐昔霉素的处理,仅在2021年进行了测试,也导致腐烂的发病率和较高的产率。这些发现突出了FRAC组7、9和12的新型杀菌剂的潜力,作为CFR管理的有效替代方法。他们的使用可以使CFR管理工具包多样化,减轻杀菌剂的耐药性并减少环境影响,从而解决了增加杀菌剂法规所带来的挑战。
三十多年来,农杆菌介导的转化技术一直用于树果作物的基因工程。尽管在草本植物和一年生植物的水平上利用这项技术仍然存在许多障碍,但该领域已经取得了很大进展(Song 等人,2019 年)。在本研究主题的第二卷中,有论文描述了不同研究小组正在采取的方法,以促进难处理的树种的遗传转化,并在更基本的层面上了解 T-DNA 插入宿主细胞基因组的机制。在一项优雅的研究中,Gelvin 等人研究了 T 环的形成作为理解 T-DNA 整合的代理。在这项工作中,从转基因植物本氏烟或拟南芥中形成的 T 环中详细描述了与 LB-RB 连接相关的区域。结果表明,T 环中的 RB-LB 连接类似于 T-DNA 和发生整合的植物 DNA 之间的连接。相似之处包括:与 RB 相比,LB 处的缺失频率更高且序列变化更为广泛;连接位点存在微同源性;存在来自农杆菌或植物基因组的填充 DNA;多个 T-DNA 拷贝的多联体组织,其中 RB-RB 和 LB-LB 连接比 RB-LB 连接更常见。此外,作者还表明,T 环的形成即使在农杆菌 VirD2 基因中没有 Ku80 和 w 突变的情况下也能进行,其影响与对 T-DNA 整合的影响相似。根据他们的数据,作者提出 T 环的形成可用于研究 T-DNA 整合到宿主基因组的所有方面。大多数关于柑橘转化的已发表研究都仅使用了少数相对容易转化的品种的材料(Song 等人,2021 年)。 TAMU 的 Mandadi 团队(Dominguez 等人)开发了一种方法,可以促进 14 种柑橘品种的转化。他们通过在转化方案中使用的培养基中添加亚精胺和硫辛酸等补充剂,并使用含有额外 VirG 和 VirE 基因拷贝的辅助质粒 pCH32 来实现这一点。
作者的完整列表:吴,朱兰; Nanyang Technology University,能源研究所SOH,Tanto; Nanyang Technology University,能源研究所Chan,Jun Jie;南良技术大学,能源研究所Meng,Shize;丹尼尔(Daniel)材料科学与工程学院Nanyang Technological University; CEA,ICSM Srinivasan,Madhavi;南南技术大学,材料科学与工程学院,乔阳;南南技术大学,材料科学与工程学院
为了使您快速前进,我们在Stemma Qt form form(https://adafru.it/lbq)中启动了定制的PCB,使其易于与之接口。两侧的Stemma Qt连接器(https://adafru.it/jqb)与SparkFun Qwiic(https://adafru.it.it/fpw)I2C连接器兼容。这使您可以在开发板和Max17048之间建立无焊接连接,或使用兼容的电缆(https:// adafru.it/jnb)与其他各种其他传感器和配件链接。不包括QT电缆,但我们在商店中有多种多样(https:// adafru.it.it/17ve)
果实作为被子植物特有的器官,为人类提供丰富的膳食纤维、维生素等营养物质,是健康膳食结构的重要组成部分(Giovannoni,2001;Chen et al.,2020)。果实成熟是果实食用品质形成的关键时期,是一个涉及果实质地变化、色素积累、香气和风味物质形成、抗性降低等性状的复杂发育过程,受诸多内外部因素的调控(Giovannoni,2004;Ji and Wang,2023)。内外部因素主要有转录因子和激素等,外外部因素主要有各种生物因素和非生物因素。根据呼吸模式的不同,果实可分为跃变型和非跃变型两类(Mcmurchie et al.,1972)。在果实成熟过程中,呼吸强度和乙烯释放量出现伴随爆发,如番茄、苹果和香蕉等,而非呼吸强度和乙烯释放量变化不显著,如草莓、葡萄、柑橘等( Shinozaki et al.,2018 )。乙烯生物合成的两个系统(系统I和系统II)在果实发育和成熟过程中起着至关重要的作用。未成熟的果实和植物其他器官持续产生低浓度的乙烯,即乙烯背景浓度。系统I乙烯以负反馈方式调节背景浓度的乙烯合成并参与果实发育,系统II乙烯以负反馈方式产生。
带有5.1K CC电阻的C型USB C型连接器,因此它将与任何计算机或电源一起使用,可获得5V和最多1A。可用的数据线在底部突破中。单独的DC或太阳能输入 - 边缘上的两个垫子可用于连接5〜18V电源,可以代替USB使用。如果输入是太阳能电池板,则充电芯片将调整电流绘制,以使电压不会降低电池以下,从而优化了太阳能输入。无需大型电容器即可稳定它,并且您可以在没有MPPT的成本和复杂性的情况下获得接近MPPT的能力。默认充电率为1A,但是您可以将跳线上的跳线设置为500mA功率路径的负载路径 - 如果4.5V或3.3V负载连接器是绘制电流的,而USB / DC /太阳能是连接的,则将默认用于从充电器中绘制电流的电流,并且任何剩余电流都会符合电池电量。可以防止电池不断充电/放电,从而降低电池寿命。调节的4.5V -max输出 - 无论您在USB或DC /太阳能输入上有什么电压,由于内部电压调节器,4.5V端子块输出端口永远不会超过4.5V。不过,请记住这一点,当使用高电流和高直流电压时,因为LDO会使板开始过度过热和防风电流。受调节的3.3V -max输出 - 单独的降压转换器将从BQ25185中接收负载输出,并将其切换为3.3V,在1 AMP最大负载3个状态LED -Orange C Harging LED,Red F Ault LED和绿色3.3V输出LED。启用垫 - 禁用3.3V降压转换器。安装孔!
240 MHz 双核 Tensilica LX6 微控制器,具有 600 DMIPS 集成 520 KB SRAM 集成 802.11b/g/n HT40 Wi-Fi 收发器、基带、堆栈和 LWIP 集成双模蓝牙(经典和 BLE) 4 MByte 闪存 板载 PCB 天线 超低噪声模拟放大器 霍尔传感器 10x 电容式触摸接口 32 kHz 晶体振荡器 3 x UART(Feather Arduino IDE 支持中仅默认配置两个,一个 UART 用于引导加载/调试) 3 x SPI(Feather Arduino IDE 支持中仅默认配置一个) 2 x I2C(Feather Arduino IDE 支持中仅默认配置一个) 12 x ADC 输入通道 2 x I2S 音频 2 x DAC 每个 GPIO 引脚上可用的 PWM/定时器输入/输出 带有 32 kB TRAX 缓冲区的 OpenOCD 调试接口 SDIO主/辅 50 MHz SD 卡接口支持