IQ电池5P具有新的电池模块设计,可减少电池电池之间的热失控。 对UL 9540A版4. 评估了新设计。IQ电池5P具有新的电池模块设计,可减少电池电池之间的热失控。对UL 9540A版4.此测试是使用UL 9540A标准进行的,而无需使用UL认证要求决策(CRD)。测试是在NFPA 286火灾测试室中进行的,在该室中,通过标准中定义的傅立叶变换红外(FTIR)气体分析仪测量了气体组成。
AA:辅助活动29 A. Goss。 :Ashbya Gossypii 30 Cazy:碳水化合物活性酶数据库31 Cazyme:碳水化合物活性酶32 CBM:碳水化合物结合模块33 CE:碳水化合物酯酶34 C. PIN。 :Chitinophaga Pinensis 35 C. Vacc。 : Chromobacterium vaccinii 36 FTIR: Fourier Transform InfraRed (spectroscopy) 37 G. alk.. : Gordonia alkanivorans 38 GH: Glycoside Hydrolase 39 GT: Glycosyltransferase 40 LAP: L-Leucine-7-amido-4-methylcoumarin hydrochloride 41 OD: Optical density 42AA:辅助活动29 A. Goss。:Ashbya Gossypii 30 Cazy:碳水化合物活性酶数据库31 Cazyme:碳水化合物活性酶32 CBM:碳水化合物结合模块33 CE:碳水化合物酯酶34 C. PIN。:Chitinophaga Pinensis 35 C. Vacc。: Chromobacterium vaccinii 36 FTIR: Fourier Transform InfraRed (spectroscopy) 37 G. alk.. : Gordonia alkanivorans 38 GH: Glycoside Hydrolase 39 GT: Glycosyltransferase 40 LAP: L-Leucine-7-amido-4-methylcoumarin hydrochloride 41 OD: Optical density 42
摘要:本研究的目的是通过文献计量学文献综述,在热解过程后确定聚苯乙烯螺旋霉素微粒的化学化合物含量以及其热解化学反应机制。使用傅立叶变换红外(FTIR)和气相色谱质量光谱(GC-MS)进行分析。通过将30 g的聚苯乙烯颗粒(尺寸为3000 µm)分解为105分钟,在120-190°C的范围内,在没有空气的情况下,进行了105分钟。该过程是在批处理反应器内完成的(长度x宽度x高= 44.5 cm x 35.5 cm x 25 cm),配备了一个连接到三个冷凝器(24°C)的出口。将冷凝器设置为串联,其中冷凝器1直接连接到反应器和连接器2连接的冷凝器1和3。热解会导致第一个冷凝器是一种两相液体,顶层中有褐色黄色的液体,底层中的无色和刺耳的液体。在第二和第三个冷凝器中,获得了无色和辛辣的液体。FTIR的结果表明在样品中检测到不同的化学成分。第一个,第二和第三冷凝器包含芳香族C = C键。第二和第三冷凝器具有相同的官能团,即H 2 O中的氢键,以及具有C -H弯曲烯烃的芳族官能团,这些算力也由FTIR原料所具有。通过GC-MS分析的结果表明,第二和第三个冷凝器含有苯乙烯,甲苯,乙酸甲酯,苄基环丙烷和其他苯乙烯衍生物。通过GC-MS分析的结果显示,在2-丙酮和苯甲胺化合物中发现的氧和氮的混合物。这个热解过程表明发生降解反应,其中聚苯乙烯被降解为小片段,例如苯乙烯和其他衍生物,例如苯,甲苯和甲苯和苯基苯。然而,由于存在氧和氮,热解是不完整的。这项研究对提供有关热解过程的想法和信息产生了有益的影响。这项研究还提供了用于在传统废物处理基础设施难以到达的领域的热解过程中的想法。本研究还旨在支持可持续发展目标(SDG)中的当前问题。
与物理和化学合成相比,使用绿色还原提取物进行 ZnONPs 生物合成是一种简便、环保的方法。本研究首次利用薰衣草叶提取物合成 ZnONPs。采用紫外-可见光谱、PXRD、FESEM、EDAX 和 FTIR 等技术对 ZnONPs 进行表征。将 ZnONPs 以 80mg/L 至 160mg/L 的剂量依赖性方式暴露于登革热病原体白纹伊蚊 24 小时。在 346 nm 处发现紫外-可见吸收峰,证实了 ZnONPs 的生物合成。FESEM 结果表明,ZnONPs 以截角八面体形态的聚集体形式形成。平均粒径为 74.58 nm。 PXRD 分析表明 ZnONPs 本质上是结晶的。FTIR 分析表明,酚类、醇类和胺类等不同的功能基团参与了 ZnONPs 的合成。ZnONPs 在用 A. albopictus 的四龄幼虫处理后表现出显著的杀蚊幼虫活性。暴露 24 小时后,ZnONPs 在浓度为 160mg/L 时表现出 100% 的死亡率,LC50 值为 118mg/L,LC90 值为 135mg/L。基于这些结果,我们强烈建议将截角八面体形状的 L. angustifolia ZnONPs 用作对抗蚊媒疾病和害虫管理的强效生物医学药剂。
这项工作旨在从静态和动态的角度评估在铁离子存在下基于聚羧酸的尺度抑制剂的性能(FE III)。分别根据NACE TM0197-2010和NACE TM31105-2005标准进行静态(JAR测试)和动态(管阻塞测试)测试。在油井的流动条件下确定最低抑制浓度(LIC)。此外,还评估了Fe III离子浓度对降水过程的影响。通过X射线衍射(XRD),红外光谱(FTIR)和扫描电子显微镜(SEM)分析量表沉积物。结果表明,在没有Fe III离子的情况下,尺度抑制剂在化学上与所选盐水具有30 mg L -1的lic含量。在Fe III离子的存在下,抑制剂被证明是效率低下且不兼容的,因此无法确定LIC。组合的XRD,FTIR和SEM分析使我们能够将抑制剂的作用机理识别为络合物之一,Poly(羧酸)-ca 2+。此外,在Fe III离子存在下进行的分析表明,Caco 3晶体的结尾形态发生了显着变化。此外,已经证明,Fe III离子显着影响抑制剂的性能。最后,结果表明,在没有高浓度的Fe III离子的情况下,聚(羧酸)尺度抑制剂可以是减轻因油井中无机尺度沉积而导致的运营成本的选择。
目的:膜生物反应器(MBR)系统被广泛用于废水处理,但膜结垢仍然是一个主要挑战。本研究旨在比较陶瓷膜在两个操作模式(例如侧面和淹没)中的结垢行为和过滤性能。方法:评估了物理和化学清洁对去除结垢和过滤性能的影响。测量了关键参数,例如结垢速率,细胞外聚合物(EPS)浓度和化学氧需求(COD)去除效率。傅立叶转换红外光谱(FTIR)用于识别膜表面上的结垢成分。结果:与侧流MBR相比,淹没的MBR表现出更高的总结垢(93.6%)(82.3%),可逆犯规速率分别为50.9%和56.2%,而不可逆转的结垢率分别为42.7%和26.3%。EPS水平从淹没的MBR中的255 mg/GVS降至120,而侧流MBR中的65个降低。与淹没的MBR相比,侧流MBR的COD去除效率(88%)更高(82%)。FTIR分析揭示了膜蛋糕层上的结垢成分,例如腐殖酸,多糖,卤化物和烷基卤化物,有助于孔隙阻塞和蛋糕形成。结论:该研究表明,侧流MBR在降低和增强过滤性能方面的表现优于淹没MBR,强调了配置和清洁策略在优化陶瓷膜应用中用于废水处理的重要性。
使用顺序渗透合成 (SIS) 将无机氧化物渗透到聚合物内部是一种有效的方法,可用于创建广泛应用的材料。各种聚合物官能团与有机金属/无机前体之间的反应是独一无二的,因此了解一系列前体和聚合物之间的特定相互作用对于实现预测性工艺设计和将 SIS 的效用扩展到应用至关重要。在本文中,在三种不同的均聚物中的 Al 2 O 3 和 TiO 2 SIS 期间进行了原位傅里叶变换红外光谱 (FTIR) 测量:聚甲基丙烯酸甲酯 (PMMA)、聚己内酯 (PCL) 和聚 2-乙烯基吡啶 (P2VP)。从前体暴露后和随后的吹扫时间内的 FTIR 强度变化可以定量表明,这些聚合物与金属前体的相互作用动力学以及中间复合物的稳定性存在很大差异。这项比较研究的一个重要发现是,尽管 PCL 的羰基 (C=O) 和酯基 (COR) 官能团与相互作用较弱的 PMMA 相似,但 PCL 与金属前体的相互作用要强得多。这种行为表明,除了官能团的特性之外,还有其他因素决定了聚合物与 SIS 中的金属化合物的相互作用方式。PCL 以前从未在 SIS 工艺中出现过,它可能是一种有吸引力的聚合物模板,可用于实现均匀性和成本效益更高的 SIS。
摘要。气体监测是理解地下环境中天然气的交换,扩散和迁移过程的先决条件,这与多种应用有关,例如CO 2的地质隔离。在这项研究中,将三种不同的技术(微型GC,红外和拉曼光谱镜)部署在一个实验性的钻孔上,以进行CO 2注射后的监测目的。的目的是开发一种实时化学监测装置,通过在井眼内的水中测量溶解的气体浓度,但也通过与井孔水平的平衡中的气体收集系统在表面上进行测量。但是,必须校准所有三种技术以提供最准确的定量数据。为此,实现了实验室中的第一个校准步骤。需要进行新的校准,以确定水中或气体收集系统中的气体浓度和/或浓度。用于气相分析,微型-GC,FTIR光谱和拉曼光谱法。对于CO 2,CH 4和N 2进行了Mi-CRO-GC的新校准,不确定性从±100 ppm到1.5 mol%,具体取决于散装浓度和气体类型。先前对CO 2和CO 2,N 2,O 2,CH 4和H 2 O校准了FTIR和RAMAN光谱仪,其精度为1 - 6%,具体取决于浓度尺度,气体和光谱仪。溶解的CO 2。预测溶解的CO 2浓度的不确定性分别为±0.003 mol kg 1和±0.05 bar。
具有化学配方MNFE 2 O 4的锰铁氧体纳米颗粒已通过低温化学降水方法合成。使用X射线衍射(XRD),扫描电子显微镜(SEM),能量分散X射线光谱(EDX)研究纳米粒子的结构和光学特性,傅立叶变换型非红外光谱(FTIR)和UV-vis-visible-visible-visible-vis-visible-visible Absoptignptimptignptimptimptryptimptigptryptryptrepproscophy。XRD确认准备样品的纯尖晶石相的形成。所有观察到的峰对应于具有JCPDS卡编号74-2403的锰铁氧体的标准衍射模式。从XRD数据中,计算出平均体质大小,发现为27.40 nm。FTIR光谱显示了尖晶石铁氧体的特征带。形态。元素组成及其相对比率由EDAX给出,并被发现与其初始计算值一致。紫外吸收光谱显示可见范围内的特征吸收和从紫外可见的吸收数据中确定了制备样品的带隙。mnfe 2 O 4纳米颗粒具有1.4 eV的狭窄带隙,可能在污染物的光催化降解中应用。简单的共沉淀方法被证明是合成纯锰铁氧体纳米颗粒的有效方法。版权所有©2017 VBRI出版社。关键字:共凝结法,锰铁氧体,XRD,带隙,SEM。简介
材料特性 材料制造和加工 电子显微镜 (SEM、TEM、STEM) 胶体纳米晶体合成 光谱 (UV-Vis-NIR、FTIR、Raman、XAS) 热注射和慢速注射合成 元素分析 (ICP-AES、EDX、XPS) 配体交换和表面改性 动态光散射 刮刀涂布和旋涂 粉末 X 射线衍射 射频溅射 AC/DC 电子测量 电子顺磁共振光谱 光谱椭圆偏振法 光谱电化学
