Kelley McKissic, PhD Director, Strategic Regulatory Affairs Central Garden & Pet Company 1501 E. Woodfield Rd Suite 200W Schaumburg, IL 60173 Subject: PRIA Label Amendment – Addition of sheep and goat (other ruminants) to Directions For Use Product Name: RF2202-04 DFB BLOCK EPA Registration Number: 89459-8 Application Date: October 30, 2023 Case编号:493846亲爱的凯利·麦基斯(Kelley McKissic):上面提到的修订标签,与联邦杀虫剂,杀菌剂和啮齿动物剂法案(FIFRA)(FIFRA)(经修订)提交。此批准不会影响以前在此注册上施加的任何条件。您将继续遵守注册的现有条件以及与之相关的任何截止日期。标签的盖章副本已包含在您的记录中。此标签取代所有先前接受的标签。,在发布新标签的产品之前,您必须提交最终打印标签的副本。根据40 CFR 152.130(c),您可以根据本信之日起18个月的先前批准的标签分发或出售此产品。18个月后,您只能在带有新的修订标签或随后批准的标签上分发或出售此产品。“分发或出售”是根据FIFRA第2节(GG)定义的,其实施法规为40 CFR 152.3。,如果您希望在您的标签上添加/保留对公司网站的引用,请注意,该网站在FIFRA下贴上标签,并可能由该机构进行审查。如果网站是错误的或误导性的,则根据FIFRA第12(a)(1)(e)条出售或分发产品将是错误的,并且非法出售或分发。40 CFR 156.10(a)(5)列出了语句示例EPA可能会考虑错误或误导性。此外,无论您的产品标签上是否引用了网站,网站上的主张可能没有显着差异
术语AAMI的定义 - 医疗仪器行动级别的提升协会 - OSHA 29 C.F.R.中的定义§§1910.1047,动作水平是空降ETO的浓度为0.5 ppm,计算为8小时的时间加权平均值。超出OSHA动作级别将导致以下内容:个人空气监控,信息和培训计划,医疗监视计划和警告标签。ANSI - American National Standard Institute ATSDR – Agency for Toxic Substances and Disease Registry CDC – Centers for Disease Control and Prevention DCI – Data Call-In DRA – Draft Risk Assessment EBH - Ethylene bromohydrin ECH - Ethylene chlorohydrin EDSP – Endocrine Disruptor Screening Program EG - Ethylene glycol EPA – Environmental Protection Agency ESA – Endangered Species Act EtO – Ethylene Oxide FDA – Food and Drug Administration FDA CDRH – Food and Drug Administration, Center for Devices and Radiological Health FDA CFSAN – Food and Drug Administration, Center for Food Safety and Applied Nutrition FDA-HFP – Food and Drug Administration, Human Foods Program (Formerly CFSAN) FIFRA – Federal Insecticide, Fungicide, and Rodenticide Act FWP – Final Work Plan ID – Interim Decision NESHAP – National Emission Standards危险空气污染物NIOSH - 国家职业安全与健康研究所 - 空气和辐射办公室 - 农药计划OSHA办公室 - 职业安全与健康管理局PBZ - 个人呼吸区PEL - OSHA 29 C.F.R.§1910.1047,PEL或允许的暴露限制,是工人的暴露限制,基于8小时的加权平均值(TWA)设置为百万分之1(ppm)。twa - 时间加权平均超出OSHA PEL的范围将导致以下内容:书面合规计划,受管制区域和呼吸器使用。 PID - 拟议的临时决策PWP - 第29 c.f.r.中定义的初步工作计划Stel- §1910.1047,Stel或短期暴露限制,是根据15分钟的时间加权平均值(TWA)设置为5份的工人暴露限制(PPM)。 OSHA还将此值称为偏移限制。 超出OSHA Stel的性能将导致以下内容:个人空气监控,信息和培训计划,警告标签,书面合规计划和受监管领域。超出OSHA PEL的范围将导致以下内容:书面合规计划,受管制区域和呼吸器使用。PID - 拟议的临时决策PWP - 第29 c.f.r.中定义的初步工作计划Stel-§1910.1047,Stel或短期暴露限制,是根据15分钟的时间加权平均值(TWA)设置为5份的工人暴露限制(PPM)。OSHA还将此值称为偏移限制。超出OSHA Stel的性能将导致以下内容:个人空气监控,信息和培训计划,警告标签,书面合规计划和受监管领域。
摘要:磷化合物工业,特别是可溶性矿物肥料工业规模非常大。但是,剩余的磷资源可供勘探 60-80 年,开采出的磷中只有不到 10-15% 可以用于植物。其他磷则作为环境污染物消失 [1, 2]。传统磷工业的“绿色”替代方案是直接利用微生物溶解不溶性磷矿石。这项工作的目的是基于在俄罗斯气候区变化和独特生态位的考察工作,尽可能广泛地创建和开发活性磷酸盐溶解微生物 (PSM) 的收集。该收集用于开发区域磷生物肥料和其他需求。方法。组织了 15 次长期和短期考察,前往各种气候(从亚北极到亚热带)和生态位(矿山、保护区、洞穴、火山等),收集最有效的 PSM。通过定量控制矿物液体培养基中的 PS 活性和功效、使用多种碳源、检查“非卤化”分离物,加强了磷酸三钙 (TCP) 琼脂 [3,4] 上“透明区”的半定量和矛盾选择方法。选定的 PSM 被储存在收集中并筛选其他潜在活性。结果。广泛的远征搜索(超过 100 个生态位)允许创建具有可变特征培养物的大型 PSM 集合(超过 700 个)。新选择的分离物属于不同的微生物群:从革兰氏阴性杆菌、球菌到革兰氏阳性孢子杆菌和酵母。许多分离物不是从土壤或根际中选出的,而是从营养和磷严重缺乏的生态位中选出的。三分之一的收集的非卤化培养物显示出最高水平的 PSA。与已知的最佳 PSM [7] 相比,许多分离物对 TCP 和天然 P 矿石的 PS 活性非常高,并且具有更好的技术性能。作为生物肥料,几种菌株在盆栽和田间试验中成功测试。PS 联合体的使用表明,可以从贫矿石和废物中连续流动 P,从而回收 P 并保护环境 [5,6]。许多 PSM 的有用特性是高水平的杀菌剂活性。PSM 收集对于筛选代谢物、酶(有机酸、生物聚合物、植酸酶等)非常有前景。这项工作得到了 ISTC 项目 #2754.2、#3107 的支持。
1. Executive Summary When the Environmental Protection Agency (EPA or Agency) takes an action on a pesticide registration ( e.g., registers a pesticide or reevaluates it in registration review) under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA), the Agency is responsible under the Endangered Species Act (ESA) to ensure that the action is not likely to jeopardize the continued existence of federally threatened or endangered (referred to as “listed”) species, or result in the destruction or adverse modification of their designated critical habitats. Chemical stressors, such as pesticides, are one of many factors that can contribute to population declines of listed species. Meeting this ESA responsibility is a formidable task, considering the tens of thousands of pesticide products and registration amendments for which EPA is required to review the potential effects for over 1,700 U.S. listed species. Given these challenges, in April 2022, EPA released a workplan (USEPA, 2022a) and an update to the workplan in November 2022 (USEPA, 2022b) that describe how it plans to meet its ESA obligations as part of pesticide registration processes under FIFRA. The update also describes strategies for identifying early mitigation measures to address potential population-level impacts to listed species across groups of chemicals ( e.g ., herbicides, rodenticides, insecticides) or in certain regions of the U.S. These strategies intend to more efficiently determine whether, how much, and where mitigations may be needed to protect listed species from many uses of conventional pesticides. This final Herbicide Strategy is another key step in meeting this goal. This Herbicide Strategy covers only conventional herbicides - an important, widely used tool for growers to prevent or eliminate weeds that compete with crops for light, moisture, and nutrients. EPA focused the strategy on agricultural uses in the lower 48 states because hundreds of millions of pounds of herbicides (and plant growth regulators) are applied each year (USEPA, 2017), which is substantially more than for non-agricultural uses and for other pesticide classes ( e.g. , insecticides, fungicides). In addition, there are hundreds of species listed by the U.S. Fish & Wildlife Service (FWS) 1 in the contiguous U.S. The mitigations identified in the strategy would address potential impacts to listed plants (terrestrial, wetland, and aquatic), which are the types of species likely to be most impacted by herbicides. By identifying mitigations to protect plants, listed animal species that depend on plants would also be protected. This includes animals that depend on plants for food and shelter (habitat). By identifying and defining mitigations for these listed plant and animal species, EPA will consider and apply this final Herbicide Strategy as appropriate in FIFRA actions, which should result in reductions of population-level impacts to over 900 listed species in the lower 48 states. The Herbicide Strategy is intended to create a consistent, reasonable, transparent, and understandable approach to assess potential impacts and identify mitigations to reduce potential population-level impacts to listed species from the use of agricultural herbicides. The strategy does not include ESA effects determinations, but instead is meant to identify proactive mitigations that can be applied in registration and registration review actions to reduce pesticide impacts to listed species. The strategy is intended to provide similar and consistent mitigations for herbicides with similar characteristics ( e.g. ,
《 2024年的农场,食品和国家安全法》包括常识性法规改革措施,以恢复对联邦政府的透明度和基于科学的决定,减少官僚主义的繁文tape节,并减轻对美国生产商的负担。农业标记统一性为联邦机构负责管理联邦杀虫剂,杀菌剂和啮齿动物剂法案(FIFRA),美国环境保护局(EPA)(EPA)在注册或重新审查所有农药之前彻底评估它们以确保它们符合联邦安全标准以保护联邦安全标准,以保护人类健康和环境。因此,国会在FIFRA中包括语言,表明任何州不得强制或继续生效对标签或包装的要求,除了与FIFRA所要求的标签或不同之外。最近,与这项政策有关的误解可能导致不可行的拼凑而成的州农药标签要求和风险破坏商业。该法案包括语言重申,EPA是制定与农药有关的安全发现的唯一权力,同时保留了各州进一步调节这些工具的使用的能力。认可和国家牵头机构的作用法案澄清说,在FIFRA下实施EPA法规的州首席机构是该州的机构,有权规范农作物保护和有害生物控制工具的使用,为农民,商业申请者和依靠这些工具提供监管确定性。该法案不包括植物生物刺激剂在FIFRA下的调节中。植物包含的保护剂EPA和USDA协调美国农业部(USDA)有害生物管理政策办公室(OPMP)于1998年成立,旨在提供与农药有关的政策和活动的有效协调,并提供领导层,以确保与其他机构的协调。该法案加强了EPA与USDA之间与农药调节有关的工作关系,要求EPA在注册和注册审查过程中进一步与USDA进行农药的注册和注册审查过程,包括针对风险缓解措施的制定。植物生物刺激物植物生物刺激剂是支持植物自然营养过程的物质,从而可以提高植物的效率。将这些物质排除在联邦法规之外,将为植物生物刺激行业提供清晰和刺激性的创新。
Anne Overstreet 生物农药和污染防治部(7511P) 环境保护署农药计划办公室 1200 Pennsylvania Ave. NW 华盛顿特区 20460–0001 事由:卷宗编号 EPA–HQ–OPP–2019–0508 2020 年 12 月 8 日 我谨代表下列农民、牧场主、合作社、零售商、科学家、植物育种者、种子生产者和共同监管者,代表美国广泛而多样的农业利益相关者,感谢有机会就拟议规则“农药;源自新技术的某些植物内保护剂 (PIP) 的豁免”发表评论和反馈意见。我们赞扬美国环境保护署 (EPA) 为实现生物技术监管体系现代化而做出的努力,该署提议将符合条件的“基于通过生物技术创造的性相容植物的 PIP”从《联邦杀虫剂、杀菌剂和灭鼠剂法案》 (FIFRA) 的大部分要求以及《联邦食品药品和化妆品法案》 (FFDCA) 规定的容差设定要求中豁免。我们赞赏拟议规则的总体愿景,但我们也提出了一些建议,我们认为这些建议将有助于 EPA 制定更科学、更基于风险的最终规则。我们还相信,如果这些建议被采纳,将有助于美国保持其在植物生物技术发展方面的全球领导地位。我们在此解释了统一的基线建议,以增强拟议规则,满足我们各利益相关者的需求。许多签署方还将提交单独的意见,提供与各个利益相关者需求相关的具体建议的更多细节,或提出超出本信函内容的建议。拟议的 PIP 豁免的近期历史背景 了解促使 EPA 提议豁免这一范围狭窄、风险较低的 PIP 子集的近期历史背景非常重要。2015 年 7 月,奥巴马总统的总统行政办公室 (EOP) 发布了一份备忘录,提出了对当前生物技术监管框架在某些情况下强加不必要的成本和负担的担忧,这些成本和负担阻碍了中小企业参与市场,限制了公众对监管流程的理解,从本质上抑制了创新。1 该备忘录成立了一个跨部门工作组,以制定“现代化生物技术产品监管体系的国家战略”(国家战略),该战略于 2016 年 9 月发布。除了重申“美国政府的政策是寻求保护健康和环境的监管方法,同时减少监管负担,避免不合理地抑制创新、污名化新技术或制造贸易壁垒”之外,国家战略还指示 EPA 应该“阐明其对源自基因组编辑技术的杀虫产品的态度。”2
主要产品:涂料和油墨添加剂:Texanol™、Optifilm™、酮、酯、乙二醇醚、醇溶剂、EastaPure™、纤维素、聚酯、聚烯烃基聚合物和 Tetrashield™ 保护性树脂体系胶粘剂树脂:碳氢化合物树脂(Piccotac™、Regalite™、Eastotac™、Eastoflex™、Aerafin™)轮胎添加剂:Crystex™ 不溶性硫磺、Santoflex™ 抗降解剂和 Impera™ 高性能树脂护理化学品:烷基胺衍生物、有机酸及衍生物、纤维素酯、Banguard™ 杀菌剂特种液体:Eastman Therminol™ 传热流体、Skydrol™、涡轮机油、SkyKleen™、Marlotherm™动物营养:有机酸及衍生物、有机酸基溶液、氯化胆碱、Eastman Enhanz™ 主要市场与应用: 运输:橡胶轮胎制造中使用的不溶性硫、抗降解剂和高性能树脂、OEM 和修补涂料中使用的聚合物和溶剂、航空液体 消耗品:卫生和包装胶粘剂中使用的树脂、涂料添加剂以及图形艺术和油墨中使用的聚合物 建筑:建筑涂料中使用的溶剂、建筑胶粘剂和室内地板用树脂 食品、饲料与农业:土壤熏蒸剂、动物饲料的肠道健康、防腐、杀菌剂和植物生长调节剂 工业化学品与加工:化学过程和可再生能源的传热流体 能源、燃料与水:水处理用的烷基胺衍生物 消费/医疗耐用品:涂料、木材和工业应用中使用的聚合物和溶剂 个人护理/健康与保健:个人护理应用和水处理中使用的胺基中间体 主要原材料:醇、烷基胺、氨、苯胺、甲基苯乙烯、苯、C9 树脂油、CS2 烧碱、环氧乙烷、甲酸、松香、重质燃料油、甲基异丁基酮、环烷工艺油、新多元醇酯、硝基苯、戊二烯、磷、丙烷、丙烯、硫、苯乙烯、木浆 主要竞争对手: 涂料和油墨 添加剂:巴斯夫欧洲公司、陶氏公司、Oxea、塞拉尼斯公司 粘合剂树脂:埃克森美孚公司、可隆工业公司、赢创工业公司 轮胎添加剂:东方炭素化学株式会社、四国化成株式会社 护理化学品:巴斯夫欧洲公司、陶氏公司、亨斯迈公司、科迪华公司、Agro-Kanesho 株式会社、拜耳 特种液体:陶氏公司、埃克森美孚公司 动物营养:巴斯夫欧洲公司、Perstorp Holding AB、鲁西化工集团、肥城酸性化学品
1. Lowell, JT 等人 (2021) 四染色体规模基因组和全基因组注释可加速山核桃树育种。Nat Commun 12, 4125。DOI:10.1038/s41467-021-24328-w 2. Hufford, MB 等人 (2021) 26 种不同玉米基因组的从头组装、注释和比较分析。Science 373, 6555。DOI:10.1126/science.abg5289 3. Sun, X. 等人 (2020) 分阶段二倍体基因组组装和全基因组为苹果驯化的遗传历史提供了见解。Nat Genet 52, 1423–1432。 DOI:10.1038/s41588-020-00723-9 4. Liu, Y. 等人 (2020) 野生和栽培大豆细胞的全基因组。Cell 182, 1 162-176。DOI:10.1016/Cell 2020.05.023 5. Kingan, SB 等人 (2019) 使用 PacBio Sequel II 系统对单个野外采集的斑点灯笼蝇 (lycorma delicatula) 进行高质量基因组组装,GigaScience 8, 10, giz122。DOI:10.1093/gigascience/giz122 6. Samils, B. 等人(2021) 开发一种 PacBio 长读测序检测方法,用于高通量检测小麦根结线虫前部的杀菌剂抗性。Microbiol 12, 1610。DOI:10.3389/fmicb.2021.692845 7. Hou, Z., et al. (2021) 对中国新发现的松木线虫昆虫媒介进行比较转录组分析,揭示与宿主植物适应相关的假定基因。BMC Genomics 22, 189。DOI: 10.1186/s12864-021-07498-1 8. Bickhart, DM, et al. (2019) 通过结合长读组装和邻位连接将病毒和抗菌素耐药性基因分配给复杂微生物群落中的微生物宿主。 Genome Biol 20, 153。DOI:10.1186/s13059-019-1760-x 9. 联合国 (2019) 世界人口增长速度放缓,预计到 2050 年将达到 97 亿,并可能在 2100 年左右达到峰值,达到近 110 亿 10. Owen, JR 等人 (2021) 利用 CRISPR-Cas9 系统在牛受精卵中一步生成靶向敲入小牛。BMC Genomics 22, 118。DOI:10.1186/s12864-021-07418-3 11. Kosicki, M. 等人 (2018) 修复 CRISPR-Cas9 诱导的双链断裂会导致大量缺失和复杂的重排。自然生物技术,36,765-771。
摘要:农药被广泛使用,导致人类持续接触农药,并可能对健康产生影响。一些与农业工作有关的接触与神经系统疾病有关。自 2000 年代以来,文献中对农药在中枢神经系统 (CNS) 肿瘤发生中的作用的假设进行了更详尽的记录。然而,儿童脑癌的病因仍然很大程度上未知。这项工作的主要目的是根据问卷调查和统计分析从突尼斯斯法克斯哈比卜·布尔吉巴医院中部神经外科住院患者收集的信息,评估农药暴露作为中枢神经系统肿瘤风险因素的潜在作用,这些患者在 2022 年 1 月 1 日至 2023 年 5 月 31 日期间住院。它还旨在通过气相色谱-质谱技术开发一种简单快速的分析方法,用于研究一些收集的人脑肿瘤组织中农药代谢物的痕迹,以进一步强调我们对农药暴露与脑肿瘤发展之间这种相关性的假设。选取有高风险暴露史的患者进行进一步分析。采用化学计量学方法来辨别病理组和对照组之间的内在差异,并通过鉴定导致这种差异的差异表达代谢物来确定有效分离。三个样本显示出农药代谢物的痕迹,这些代谢物大多在早期检测到。一名 10 岁儿童的组织病理学诊断为髓母细胞瘤,27 岁和 35 岁成人的组织病理学诊断为高级别胶质瘤。双变量分析(比值比 >1 和 P 值 <5%)证实了暴露病例患癌症的可能性很大。Cox 比例风险模型显示,50 岁以后的致癌风险是农药毒性的长期影响。我们的研究支持农药暴露与人类脑肿瘤发展风险之间的相关性,表明孕前农药暴露,以及可能的怀孕期间的暴露,与儿童脑肿瘤风险增加有关。这一假设在鉴定出以神经毒性著称的氨基甲酸酯类杀虫剂代谢物痕迹以及以致癌性著称的哒嗪酮、有机氯 (OCs)、三唑类杀菌剂和 N-亚硝基化合物等代谢物痕迹后得到了进一步证实。2D-OXYBLOT 分析证实了杀虫剂的神经毒性作用,可诱导中枢神经系统细胞氧化损伤。在应激降解研究中鉴定出肟代谢物,证实了涕灭威具有脑致癌性。揭示 OC 类“氮丙啶”代谢物可能更好地强调了在早期检测农药代谢物痕迹的理论。总体而言,我们的研究结果促使我们建议限制农药在住宅中的使用,并支持为实现这一目标而制定的公共卫生政策,我们需要在上市后对人类健康影响的监测中保持警惕。
*相应的作者的电子邮件:karimah.m@umk.edu.my; gunavathy@lincoln.edu.my Chilli Pepper是最重要的经济作物之一。但是,蒽(Colletotrichum spp。)是影响辣椒质量和产量的最具破坏性的真菌疾病之一。有必要通过使用天然和环保方法从种子(初始)阶段开始在所有生长阶段控制这种真菌感染。实验室和盆栽研究,以评估用1-脱氧基因霉素(1- DNJ)桑s植物膜对种子发芽,植物生长和蒽糖发育的涂层膜的疗效。1-DNJ Mulberry叶提取物涂料的水平为1、2、3和4%。此外,应用了1%Thiram杀菌剂的阳性对照,以及1-DNJ和Thiram应用的阴性对照。结果表明,用仙人掌提取物感染了炭疽糖的涂料辣椒种子,在处理2、3和4%的桑树叶提取物涂层中,发芽率显着提高了80%以上的发芽率。与正面和阴性对照相比,在种子涂有种子涂有种子的种子涂层的处理中,种子涂有种子的处理中,辣椒植物的生长参数,根长度和芽高明显更大。观察到辣椒幼苗新鲜重量的类似结果,在2%桑叶提取物中,芽新鲜重量是最高的。这些结果清楚地表明,桑叶提取物(1-DNJ)具有抑制colletotrichum spp的潜力。并提高辣椒种子质量。因此,可以将2%桑叶提取物(1-DNJ)作为疾病感染的辣椒种子的涂料配方。关键字:蒽糖疾病,1-脱氧霉素霉素,Colletotrichum spp。,Morus alba L.提取物,种子涂料辣椒辣椒是正在全世界种植和食用的重要商业作物之一。全球耕种和商业化大约有400种不同的辣椒。最受欢迎的品种是Capsicum Annuum L.(Chaudary等人2006)。但是,辣椒作物总是容易出现害虫和疾病攻击。有许多疾病会影响辣椒植物并造成重大产量损失。通常影响辣椒作物的真菌疾病是蒽,尾孢子(Frogeye)叶点,唐尼霉菌,镰刀菌腐烂,镰刀菌,富沙氏菌,疫霉病和白粉病(Hussain and Abid 2011)。即使通过化学施用,最困难的疾病之一是炭疽病。炭疽病是热带和亚热带国家辣椒产量的主要限制,造成巨大的损失。
