与观赏植物相关的Albonectria,fusarium和Neocomospora物种Zhang YX 1±*,Chen C 1,2±,Nie lt 1±1±,Maharachchikikumbura Ssn 3,Mande kd kd kd kd 1,5,6,xiang mm 1,xiang mm 1,xiang mm。 1* 1植物健康创新研究所 /绿色预防和控制水果和蔬菜的关键实验室,中国南部,农业与农村事务部,钟卡农业与工程大学农业和工程大学,广州510225,广东,P.R. < / div> < / div> < / div> 中国2元素大学昆虫学和植物病理学系,清迈大学农业学院,清迈50200,泰国3号生命科学技术学院,电子科学技术大学信息生物学中心,成都,P.R. 中国4 Westerdijk真菌生物多样性研究所,Uppsalalaan 8,3584 CT Utrecht,荷兰5号,荷兰5,真菌研究中心,Mae Fah Luang University,Chiang Rai,Chiang Rai,57100,57100,57100,泰国6泰国6号,Botany and Microbiologology,Sapiologology,Sapiologology,Saoud sapin of Collecoper,saud ofice,p.o. Box 22452, 11495 Riyadh, Saudi Arabia Citation – Zhang YX, Chen C, Nie LT, Maharachchikumbura SSN, Crous PW, Hyde KD, Xiang MM, Al-Otibi F, Manawasinghe IS 2024 – Identification and characterization of Albonectria , Fusarium , and Neocosmospora species associated with中国南部的观赏植物。 mycosphere 15(1),6641–6717,doi 10.5943/mycosphere/15/1/30摘要与观赏植物相关的Albonectria,fusarium和Neocomospora物种Zhang YX 1±*,Chen C 1,2±,Nie lt 1±1±,Maharachchikikumbura Ssn 3,Mande kd kd kd kd 1,5,6,xiang mm 1,xiang mm 1,xiang mm。 1* 1植物健康创新研究所 /绿色预防和控制水果和蔬菜的关键实验室,中国南部,农业与农村事务部,钟卡农业与工程大学农业和工程大学,广州510225,广东,P.R. < / div> < / div> < / div>中国2元素大学昆虫学和植物病理学系,清迈大学农业学院,清迈50200,泰国3号生命科学技术学院,电子科学技术大学信息生物学中心,成都,P.R.中国4 Westerdijk真菌生物多样性研究所,Uppsalalaan 8,3584 CT Utrecht,荷兰5号,荷兰5,真菌研究中心,Mae Fah Luang University,Chiang Rai,Chiang Rai,57100,57100,57100,泰国6泰国6号,Botany and Microbiologology,Sapiologology,Sapiologology,Saoud sapin of Collecoper,saud ofice,p.o.Box 22452, 11495 Riyadh, Saudi Arabia Citation – Zhang YX, Chen C, Nie LT, Maharachchikumbura SSN, Crous PW, Hyde KD, Xiang MM, Al-Otibi F, Manawasinghe IS 2024 – Identification and characterization of Albonectria , Fusarium , and Neocosmospora species associated with中国南部的观赏植物。mycosphere 15(1),6641–6717,doi 10.5943/mycosphere/15/1/30摘要
标记避免了与体外产生的不稳定 sgRNA 相关的困难,使其成为一种产生无转基因改良 F. venenatum 菌株的有吸引力的系统。我们的结果表明,在大多数分离株中,在没有选择的情况下载体会丢失,表现为无法在潮霉素选择培养基上生长。在少数分离株中观察到的持续潮霉素抗性表明载体元素可能整合到染色体中(包括用于抗潮霉素的 hph 基因),或残留的染色体外载体(这可能是由于某些分离株中的初始拷贝数较高)。从一个转化菌落中回收潮霉素抗性和易感单孢子分离株表明在孢子形成之前,部分但不是所有细胞核中的残留载体会丢失。通过持续培养,预计最终所有细胞核都会丢失
在夏季温暖的夏季/纳莫伊山谷的温暖夏季,适合性降低可能导致中期至后期感染,这是该地区未来的潜在机会。当前管理镰刀菌的策略可能会保持有效,但可能需要调整以适应这些变化。建议的修改包括选择高镰刀菌等级品种,通过将其在收获后更长的时间内使其保持长时间,并更加强调控制宿主杂草以最大程度地减少感染风险。
摘要 本研究旨在利用从利比亚 Al-Gabal Al-Gharby 的橄榄油加工废料中分离出来的一些真菌来生产和部分纯化冷活性脂肪酶。分离出了 12 个属的 31 种真菌。F. solani 最为普遍,占总镰刀菌的 94% 和总真菌的 28.7%,在 10 和 20°C 的脂肪酶生产琼脂培养基上测试了 102 种真菌分离株的脂解活性。最活跃的分离株是链格孢菌(2 个分离株)、镰刀菌和青霉菌(每种 1 个分离株)。通过测序(ITS)对最活跃的四个分离株进行了分子鉴定。通过优化一些营养和环境因素,最大限度地提高了四种强效真菌菌株的冷活性脂肪酶产量。 F. solani AUMC 16063 在 pH 3.0 和 15°C 条件下培养 8 天后,利用硫酸铵作为氮源,能够产生最大量的脂肪酶活性(46.66U/mL/min)和比活性(202.8U/mg)。然而,在同样的条件下,当使用酵母提取物作为氮源 6 天后,产生的低温活性脂肪酶显示出最高的比活性(1550U/mg)和脂肪酶活性(36.74U/ml/min)。这是首次对 Fusarium solani 产生、部分纯化、最大化和表征低温活性脂肪酶的研究。
大多数植物病理学家在其职业生涯的某个时候都必须鉴定一种镰刀菌属的培养物。问题的复杂性各不相同,取决于培养物所来自的宿主以及鉴定所需的分辨率。镰刀菌属可在极多种宿主植物上引起多种疾病。这种真菌可通过土壤、空气或植物残留物传播,可以从植物的任何部分(从最深的根到最高的花)中回收。此外,镰刀菌属的分类学一直受到物种概念变化的困扰,在过去 100 年中,不同的分类学家确认的物种少则 9 种,多则超过 1,000 种,具体取决于所使用的物种概念。20 世纪 80 年代初,随着 Gerlach 和 Nirenberg (12) 以及 Nelson 等人的发表,相关文献数量显著稳定下来。 (31),他定义了形态学物种概念,这些概念被众多从业者广泛接受和成功使用。这些出版物最好被视为明确的路标,而不是旅程的终点。从那时起,将生物学(23)和系统发育(33)物种概念应用于新的和现有的菌株收集表明,许多先前描述的物种需要进一步分裂,才能对物种进行命名。
这项研究的作者是:Grace Sack,题为:使用 CRISPR/Cas9 编辑禾谷镰刀菌,已获批准,符合大学荣誉学位的论文或项目要求 ________ ______________________________________________________ 日期 Tilahun Abebe 博士,荣誉论文顾问 ________ ______________________________________________________ 日期 Jessica Moon 博士,大学荣誉项目主任
新南威尔士州的初级产业在各种景观中运营着各种各样的生产系统,同时面临着不断变化且高度可变气候的挑战。主要产业气候变化研究战略在项目上投资了2920万美元,以帮助该州的初级产业适应气候变化。作为这项工作的一部分,气候脆弱性评估项目对宽阔的种植,海洋渔业,林业,广泛的牲畜以及园艺和葡萄栽培部门以及关键相关的相关生物安全风险的影响进行了影响评估,以提高我们对气候变化的影响的理解。
联合国粮食及农业组织(FAO)主办的世界香蕉论坛(WBF)秘书处发言人 Victor Prada 先生代表论坛全体与会者欢迎大家参加由世界香蕉论坛秘书处 01 工作组协调的“抗击香蕉枯萎病 TR4 的全球伙伴关系”网络研讨会。本次网络研讨会是一系列在线研讨会的一部分,涵盖了香蕉枯萎病古巴专化型热带小种 4(香蕉枯萎病 TR4)的主要方面。网络研讨会旨在展示参与抗击香蕉枯萎病 TR4 的各种联盟和伙伴关系的工作,并深入了解他们的项目、计划和研究工作,强调他们的成就和创新方法,以促进社区内的合作和知识共享。
1. Garcia-Bastidas, F. 等人。哥伦比亚首次报道由 Fusarium odoratissimum 引起的卡文迪什香蕉枯萎病热带小种 4。APS 出版物。(2019 年)。259 https://doi.org/10.1094/PDIS-09-19-1922-PDN 260 2. Varma, V. 和 Bebber, DP。气候变化对全球香蕉产量的影响。Nat. 261 Clim. Change 9 , 752-757 (2019)。262 3. Simmonds, NW 和 Shepherd, K。栽培香蕉的分类和起源。J. 263 Linn. Soc. Bot。55 , 302-312 (1955)。 264 4. Gold, CS、Kiggundu, A.、Abera, AMK 和 Karamura, D. 乌干达 Musa 品种的多样性、分布和农民偏好。Exp. Agric. 38, 39-50 (2002)。 266 5. Gambart, C. 等人。农业生态集约化战略对农场绩效的影响和机遇:乌干达中部和西南部香蕉种植系统案例研究。食品系统可持续发展前沿。23, 87 (2020)。 269 6. Wielemaker, F. 引自:Kema, GHJ 和 Drenth, A. (eds.)。实现香蕉的可持续种植。第 1 卷:栽培技术。伯利·多德农业科学系列。 271 Burleigh Dodds Science Publishing,英国剑桥(2018 年)。272 7. Ordonez,N. 等人。最糟糕的情况是香蕉和巴拿马病——当植物和病原体克隆相遇时。PLoS Pathog。11,e1005197(2015 年)。274 8. Ndayihanzamaso,P. 等人。开发用于检测东非和中非尖镰孢菌古巴专化种谱系 VI 菌株的多重 PCR 检测方法。欧洲植物病理学杂志(2020 年)。277 9. Soluri,J。口味的解释:出口香蕉、大众市场和巴拿马病。环境。278 Hist。7,386-410(2002 年)。 279 10. Stover, RH 疾病管理策略和香蕉产业的生存。植物病理学年鉴。24 ,83-91 (1986)。281 11. Bubici, G.、Kaushal, M.、Prigigallo, MI、Gómez-Lama Cabanás, C. 和 Mercado-Blanco, J. 香蕉枯萎病的生物防治剂。微生物学前沿。10 ,616 (2019)。283 12. Kaushal, M.、Mahuku, G. 和 Swennen, R. 枯萎病感染田中有症状和无症状香蕉相关的根部定植微生物组的宏基因组学见解。植物。9 ,263 (2020)。 286 13. Mollot, G.、Tixier, P.、Lescourret, F.、Quilici, S. 和 Duyck, PF 新的主要资源增加了对香蕉农业生态系统中害虫的捕食。农业与昆虫学。14 , 317-323 288 (2012)。 289 14. Djigal, D. 等人。覆盖作物改变香蕉农业生态系统中土壤线虫食物网。土壤生物化学。48 , 142-150 (2012)。 290 15. Karangwa, P. 等人。东非和中非尖镰孢菌古巴专化的遗传多样性。植物疾病。102 , 552-560 (2018)。 293 16. Jassogne, L. 等人。咖啡/香蕉间作为乌干达、卢旺达和布隆迪的小农咖啡 294 农民提供了机会。在 G. Blomme、P. Van Asten 和 B. Vanlauwe 中,撒哈拉以南非洲湿润高地的香蕉系统(第 144-149 页)。国际农业和生物科学中心。沃灵福德:CABI。(2013 年)。 17. Norgrove, L. 和 Hauser S. 喀麦隆南部农林业系统中不同树木密度和“刀耕火种”与“刀耕火种”管理下芭蕉的产量。大田作物研究。78,185-195(2002 年)。 18. Zhu, Y. 等人。水稻遗传多样性和疾病控制。自然 406,718-722(2000 年)。 19. Deltour, P. 等人。农林复合系统对香蕉枯萎病的抑制作用:土壤特性和植物群落的影响。农业生态系统环境。239,303 173-181(2017 年)。304