抽象淀粉酶是一些微生物产生的水解酶,并用于淀粉的水解。这项研究旨在确定从废物中分离出的某些真菌分离株,利用合成可溶性淀粉和糖甘蔗渣作为底物合成淀粉酶合成酶的能力。尼日尔曲霉,曲霉曲霉和先前被确定为具有淀粉活性活性的镰刀菌。使用浸没的发酵过程用于产生淀粉酶,基底培养基和甘蔗甘蔗作为底物。孵育时间,底物和接种浓度,pH和温度均已优化。使用二硝基白杨酸试剂(DNS)技术来确定产生的淀粉酶的活性。使用溶剂淀粉(20 g(w/v))在室温和pH 7.0处作为底物的初始产生,当它们的浓度高(3%)较高时,所有分离株都会更好地产生淀粉酶,但孵化时间不同,但在弯曲曲霉(8.65±0.21 U/ml/ml/ml/mliim)和fus/umiium s s suspergillus nigr nigr and s hr不同的淀粉酶(3%)和fus n.1.15(7.15)黄曲霉的曲霉(7.30±0.14 U/ml/分钟)需要144小时的延长孵育时间才能产生该产品。研究表明,进一步研究了分离株的身份和提取的酶的工业应用。关键字:淀粉酶,优化,参数,甘蔗甘蔗渣,合成淀粉。Further production using sugar cane bagasse and optimization of production parameters of the isolates reveals that Aspergillus niger (4.35±0.07 U/mL/minutes) has an optimum incubation period of 120 hours, an inoculum concentration and substrate concentration of 2% each, and a pH of 6, Aspergillus flavus ( 6.40±0.28 U/mL/minutes ) has an optimum incubation 144小时的周期为中性pH时的接种物和底物浓度分别为3%,镰刀菌(6.80±0.28 u/ml/mine)的最佳孵育周期为168hr。,接种量为3%,3%的浓度为3%,底物浓度为2%,所有均值均可在30个隔离率中均可在30 o中均能均可置于30 O型均值。对于淀粉酶合成中使用的昂贵合成淀粉底物,渣酱可能是更具成本效益的选择。
使用成簇的规律间隔短回文重复序列 (CRISPR)-CRISPR 相关蛋白 9 (Cas9) 系统进行基因组编辑极大地促进了真菌病原体的遗传分析。穗枯萎病真菌禾谷镰刀菌会给具有重要经济价值的谷类作物造成毁灭性损失。最近开发用于禾谷镰刀菌的 CRISPR-Cas9 系统使得基因组编辑更加高效。在本研究中,我们描述了一种基于 CRISPR-Cas9 的基因组编辑工具,用于将预组装的 Cas9 核糖核蛋白 (RNP) 直接递送到禾谷镰刀菌的原生质体中。使用 RNP 显著增加了转化子的数量和成功用选择标记替换目标基因的转化子的百分比。我们表明,由 Cas9 核糖核蛋白介导的单个双链 DNA 断裂足以实现基因删除。此外,短同源重组仅需要靶基因两侧 50 个碱基对区域。Cas9 RNPs 的高效率使得大规模功能分析、必需基因的鉴定和基因删除成为可能,而这些是传统方法难以实现的。我们期望我们的方法将加速禾谷镰刀菌的遗传学研究。
对农作物保护化学杀真菌剂的依赖引起了环境和健康的关注,促使需要可持续和环保的替代品。使用拮抗微生物(如Paenibacillus Terrae B6A)的生物控制,为管理疾病的疾病提供了一种环保的方法。该研究的目的是评估P. terrae B6a作为针对增生型PPRI fpri 31301的生物防治剂的功效,重点是其体外拮抗活性,其对真菌形态和酶促含量的影响及其对减轻病原体诱导脂肪诱导脂肪植物的胁迫的能力。使用标准方案进行了B6a对F. forperatum的体外拮抗活性。 planta分析中的是通过用1×10 6 CFU/mL的B6A生物制成玉米种子进行的,并用F. propiferatum感染了7天。 使用分光光度计方法进行了生物染色玉米根的生化,酶和抗氧化剂活性。 使用双重培养和细胞内粗制的体外拮抗测定法分别抑制了F. propiferatum的70.15和71.64%。 此外,B6A改变了f的形态和菌丝结构。 在高分辨率扫描电子显微镜(HR-SEM)下增殖。 这是由于几丁质含量(48.03%)的增加(p <0.05)和细胞外多糖含量(48.99%)和β-1,4-葡萄糖酶活性(42.32%)的降低(P <0.05)。 玉米种子的感染带有F. ropiferatum,导致根长度显着降低(P <0.05)(37%)。使用标准方案进行了B6a对F. forperatum的体外拮抗活性。是通过用1×10 6 CFU/mL的B6A生物制成玉米种子进行的,并用F. propiferatum感染了7天。使用分光光度计方法进行了生物染色玉米根的生化,酶和抗氧化剂活性。使用双重培养和细胞内粗制的体外拮抗测定法分别抑制了F. propiferatum的70.15和71.64%。 此外,B6A改变了f的形态和菌丝结构。 在高分辨率扫描电子显微镜(HR-SEM)下增殖。 这是由于几丁质含量(48.03%)的增加(p <0.05)和细胞外多糖含量(48.99%)和β-1,4-葡萄糖酶活性(42.32%)的降低(P <0.05)。 玉米种子的感染带有F. ropiferatum,导致根长度显着降低(P <0.05)(37%)。使用双重培养和细胞内粗制的体外拮抗测定法分别抑制了F. propiferatum的70.15和71.64%。此外,B6A改变了f的形态和菌丝结构。在高分辨率扫描电子显微镜(HR-SEM)下增殖。这是由于几丁质含量(48.03%)的增加(p <0.05)和细胞外多糖含量(48.99%)和β-1,4-葡萄糖酶活性(42.32%)的降低(P <0.05)。玉米种子的感染带有F. ropiferatum,导致根长度显着降低(P <0.05)(37%)。相对于对照和感染种子,用B6A生物抗化显示根长度(P <0.05),在根长度(44.99%)中,反应性氧(ROS)诱导的氧化损伤显着降低(P <0.05)。总而言之,P。terrae B6a可能是良好的生物防治候选者,并且可以被配制成生物 - 绞霉剂,以控制经济上重要的农作物中的F. propieratum和其他相关的植物病。
5S-1 3 0 5S-2 3 0 5S-4 3 0 5S-5 3 0 5S-6 3 3 3 5S-7 3 2 5S-7 3 2 5S-10 3 3 Polii-5 3 0 Polii-5 3 0 Polii-6 3 0 Polii-6 3 0 Polii-6 3 0对照培养物Ama1-A y y ama1-a y y ama1-a y ama1-a y ama1-y y ama1-y y ama y y y y y y wt y x y x y x rristial in x ristial(from in x grormycin(pda)pda(pda) PKS12基因变体使用先前在非选择性培养基上维持的两种培养基的培养物中的接种物。显示了每种变体的3个同基因线的结果。变体。用表达MEGFP的AMA1载体转化的对照培养物(AMA1-A和AMA1-B)在选择培养基上保持了几种培养物和生长的选择培养基,每种培养培养基的三个重复用Y(增长)或X表示(无增长)。
结果:我们的发现表明NQ8GII4在遗传上与F. solani密切相关,这表明它与拟菌病的分歧。在共生建立的早期阶段,编码糖基转移酶(GTS),真菌细胞壁降解酶(FCWDES)和类固醇14α-甲基酶(CYP51)的基因显着下调,潜在地下降,潜在地下降,潜在地下降,抑制了弹ant的潜在抑制。一旦建立了共生,NQ8GII4分泌的效应子激活了植物免疫,进而可以减慢真菌的生长。涉及继发代谢产物生物合成的基因,例如I型聚酮化合酶合酶(T1PK)和非核糖体肽合酶(NRPS),显着下调。自噬相关基因(包括ATG1,ATG2,ATG11等)的同源物也被下调,这表明降解植物毒素的产生和自噬抑制作用降低是NQ8GII4共生的结果。
茉莉酸(JA),乙烯(ET)和水杨酸(SA)是三个主要的植物激素协调植物防御反应,这三个均与防御真菌病原体氧气的防御有关。但是,它们独特的作用方式和可能的相互作用仍然未知,部分原因是所有有关其活动的空间信息均缺乏。在这里,我们着手通过使用新开发的基于荧光的转录记者线的实时显微镜来探测植物免疫的这一空间方面。我们创建了一个植物免疫系统启动子(GG-PIPS)的Greengate矢量收集,使我们能够以单细胞分辨率对免疫途径的局部激活进行成像。使用此系统,我们证明了SA和JA在邻近真菌定植位点的不同的根细胞中彼此之间的空间分开作用,而ET则有助于这两组。sa和et诱导了过度敏感的反应,作为第一道防线,而JA和ET在单独的第二道防线中控制了针对病原体的积极防御。缺乏解决单个细胞水平上植物免疫反应的这种方法,这项工作表明,基于显微镜的方法可以详细了解植物免疫反应。
葱(葱囊藻)是充当天然抗氧化剂的园艺植物之一。葱在印度尼西亚的生产率相对较低。它受到各种因素的影响,其中之一是由于土壤传播病原体的攻击,即oxysporum。镰刀菌病原体攻击的症状是黄色或淡绿色的叶子,并且更长的生长。严重的攻击会导致植物死亡。平衡的施肥和生物农药的施用可以防止镰刀菌。这项研究旨在减少和控制枯萎病疾病。所使用的研究方法是拆分图设计方法,该方法由两个因素组成,即主要图,即微生物的悬浮液的应用,包括两个级别,即应用两个级别,即施用杀菌剂(S0)和子图,以及子图,即对各种有机肥料的施用(M MOR)(MONAME)(MONAME)(MOR)(MOR)(MOR)(MOR)(MOR)(MOR)(MOR)。 (M1)和Piensbio有机肥料(M2)。将使用方差分析(ANOVA)分析每种处理的观察数据。,如果每种处理差异差异,则进行邓肯测试(α= 5%)。这项研究的结果,主要情节治疗,杀菌剂的应用(S0),孵育期为29天,疾病攻击的平均强度为4.2%。子图(一种有机肥料(M))的处理无法抑制攻击的强度,并减慢了镰刀菌在青葱农作物上的孵化期。在所有观察参数上的处理和子图之间没有相互作用。
香蕉(Musa spp。)是全球重要的水果作物。真菌fusarium oxysporum f。 sp。cubense(foc)导致镰刀菌,被广泛认为是最具破坏性的植物疾病之一。fusarium Wilt先前已经破坏了全球香蕉的生产,并继续这样做。此外,由于目前使用高密度的香蕉种植园,具有理想植物建筑(IPA)的理想香蕉品种具有较高的耐药性,最佳的光合作用和有效的吸水性。这些特性可能有助于增加香蕉的产量。基因工程对于大多数品种的不育而具有焦点耐药性和理想植物建筑的香蕉品种的开发很有用。然而,基因工程带来的持续免疫反应总是伴随着降低的屈服。为了解决这个问题,我们应该对MUSA基因组进行功能遗传研究,并结合基因组编辑实验,以揭示免疫反应和香蕉中植物结构形成的分子机制。对与焦点抗性和理想结构相关的基因的进一步探索可能会导致具有理想结构和病原体超级耐药性的香蕉品种的发展。这种品种将帮助香蕉在全球范围内保持主食。
植物免疫是一个多层次的过程,包括识别病原体的模式或效应物以引发防御反应。这些包括诱导通常会限制病原体毒力的多种防御代谢物。在这里,我们在代谢物水平上研究了大麦根与真菌病原体根腐病菌 ( Bs ) 和禾谷镰刀菌 ( Fg ) 之间的相互作用。我们发现大麦烷是一组以前未描述过的具有抗菌特性的罗丹烷相关二萜类化合物,是这些相互作用中的关键参与者。Bs 和 Fg 感染大麦根会引发 600 kb 基因簇中的大麦烷合成。在酵母和本氏烟中异源重建生物合成途径产生了几种大麦烷,包括功能最丰富的产品之一 19-b-羟基大麦三烯酸 (19-OH-HTA)。该簇二萜合酶基因的大麦突变体无法产生大麦烷,但出乎意料的是,Bs 的定植率却降低了。相比之下,另一种大麦和小麦真菌病原体禾谷镰刀菌在完全缺乏大麦烷的突变体中的定植率要高 4 倍。因此,19-OH-HTA 可增强 Bs 的发芽和生长,而抑制其他致病真菌,包括 Fg。显微镜和转录组学数据分析表明,大麦烷可延缓 Bs 的坏死营养期。综上所述,这些结果表明,诸如 Bs 之类的适应性病原体可以破坏植物的代谢防御,以促进根部定植。
摘要:禾谷镰刀菌是一种丝状真菌,是小麦和其他谷类作物赤霉病的病原体,在全球范围内造成了重大的经济损失。本研究旨在利用 CRISPR/Cas9 介导的基因缺失技术研究特定基因在禾谷镰刀菌毒力中的作用。使用 Illumina 测序来表征编辑引起的基因组变化。出乎意料的是,两个分离株中发生了 2 号染色体上 525,223 个碱基对的大规模缺失,包含超过 222 个基因。许多被删除的基因被预测与氧化还原酶活性、跨膜转运蛋白活性、水解酶活性等基本分子功能以及碳水化合物代谢和跨膜转运等生物过程有关。尽管遗传物质大量丢失,突变分离株在大多数条件下仍表现出正常的生长率和对小麦的毒性。然而,在高温和某些培养基中,生长率显著降低。此外,还进行了使用夹子浸种法、种子接种法和头点接种法的小麦接种试验。未观察到毒性的显著差异,这表明这些基因不参与感染或替代补偿途径,并允许真菌在基因组大量缺失的情况下保持致病性。