表观遗传机制是影响基因表达和细胞功能的过程,而无需涉及DNA序列的变化。表观遗传学调节的基因的这种异常或不稳定的表达会引发癌症和其他各种疾病。参与抗肿瘤反应的免疫细胞和肿瘤的免疫原性也可能受到表观基因组变化的影响。这对癌症免疫疗法,表观遗传疗法及其在针对癌症中的联合治疗的发展和应用具有显着意义。我们提供了最近的研究文献概述,重点介绍了免疫细胞中表观基因组的变化如何影响免疫细胞的行为和功能以及癌细胞的免疫原性。以及对关注免疫检查点分子的免疫检查点抑制剂的表观遗传药物的联合利用[例如,程序性死亡1(PD-1),细胞毒性T-淋巴细胞相关蛋白4(CTLA-4),T细胞免疫球蛋白和Mimunoglobulin and Mucunain(Tim-3),tim-3) (lag-3)]存在于与肿瘤相关的免疫细胞和基质细胞中。我们强调了针对表观遗传调节剂扩增抗肿瘤免疫反应的小分子抑制剂的潜力。此外,我们讨论了如何利用癌症表观遗传学与癌症免疫学之间的复杂关系,以创建将表观遗传疗法与免疫疗法相结合的治疗方案。
乳腺癌 (BC) 是最常见的非皮肤癌,也是美国女性癌症死亡的第二大原因。乳腺癌的发生和发展可以通过遗传和表观遗传变化的积累来进行,这些变化使转化细胞能够逃脱正常的细胞周期检查点控制。与核苷酸突变不同,DNA 甲基化、组蛋白翻译后修饰 (PTM)、核小体重塑和非编码 RNA 等表观遗传变化通常是可逆的,因此可能对药物干预有反应。表观遗传失调是抗肿瘤免疫力受损、免疫监视逃避和免疫疗法耐药的关键机制。与黑色素瘤或肺癌等高度免疫原性的肿瘤类型相比,乳腺癌被视为免疫静止肿瘤,其肿瘤浸润淋巴细胞 (TIL) 数量相对较少、肿瘤突变负荷 (TMB) 较低,对免疫检查点抑制剂 (ICI) 的反应率适中。新兴证据表明,针对异常表观遗传修饰因子的药物可能通过几种相互关联的机制增强 BC 中的宿主抗肿瘤免疫力,例如增强肿瘤抗原呈递、激活细胞毒性 T 细胞、抑制免疫抑制细胞、增强对 ICI 的反应以及诱导免疫原性细胞死亡 (ICD)。这些发现为使用表观遗传药物与免疫疗法的组合方法作为改善 BC 患者预后的创新范例奠定了非常有希望的基础。在这篇综述中,我们总结了目前对表观遗传修饰因子如何发挥作用的理解
生殖衰老始于女性的30多岁,更年期通常发生在48至50岁之间,而卵母细胞库存(卵巢衰老)的耗尽是女性一生中不可避免的过程,最终会影响预期和健康的影响。卵巢老化是一个多维过程,其特征是卵泡数量和卵母细胞质量的逐渐下降,大约37岁左右,导致后代的不育和先天性残疾增加(1)。尽管重要性很重要,但对人类卵巢衰老的基本生物学机制知之甚少,尤其是在延长女性生育能力和改善人口质量方面。尽管预期人类的预期寿命在过去一个世纪中显着延长,但绝经年龄在很大程度上保持不变,这暗示了遗传和表观遗传因素的潜在作用,但典范标志着启动的启动偏离衰老的启动,而在47%的案例中,遗传的年龄是遗传的,而不是遗传的年龄。口服避孕药,饮酒,吸烟和体育锻炼水平(3,4)调节这种内分泌老化过渡。最近,下丘脑 - 垂体轴的衰老以及端粒酶活性降低已成为生殖衰老的关键催化剂(5)。卵泡闭锁是由于颗粒和卵母细胞的细胞凋亡引起的,这是由活性氧(ROS)产生过多引起的,也会导致卵巢衰老。Wang L.等。 inWang L.等。in最近的研究使遗传多态性确定为自然更年期年龄异质性的主要贡献者,尤其是对于参与DNA修复途径的基因。病理卵巢衰老,例如早产卵巢不足和早期,也表现出相似的遗传敏感性(6)。这一现象的核心是卵巢功能的卵泡发育和维持,尤其是DNA甲基化的表观遗传修饰,在卵巢发育的关键阶段对基因表达产生了显着影响。这些研究提供了阐明遗传学与环境对卵巢衰老的相互作用的影响。该研究主题重点介绍了描述生理和病理卵巢衰老的遗传和表观遗传机制方面所取得的一些进步,从而提供了对延长女性生殖寿命的潜在机制的见解。研究表明DNA甲基化(DNAM)衰老与生殖衰老之间的联系。但是,DNAM与更年期年龄之间的因果关系仍然不确定。技术进步使使用各种分子或表型生物标志物测量生物年龄成为可能。
摘要 生物技术可能有助于解决食品安全和保障挑战。然而,基因技术一直受到公众的严格审查,与媒体和公众话语的框架有关。这项研究旨在调查人们对食品生物技术的看法和接受程度,重点是转基因遗传修饰与基因组编辑。进行了一项在线实验,参与者来自英国(n = 490)和瑞士(n = 505)。向参与者展示了食品生物技术的主题,更具体地说,展示了转基因和遗传修饰以及基因组编辑的实验性变化片段(科学不确定性:高与低,媒体形式:新闻与用户生成的博客)。结果表明,与转基因遗传修饰相比,这两个国家的参与者对基因组编辑的接受程度更高。这些技术的普遍和个人接受度在很大程度上取决于参与者是否认为该应用有益、他们如何看待科学的不确定性以及他们所居住的国家。我们的研究结果表明,未来关于基因技术的交流应该更多地侧重于讨论使用农业技术与有形相关利益之间的权衡,而不是单方面关注风险和安全。
多发性硬化症(MS)是中枢神经系统(CNS)的一种慢性炎症性疾病,被认为是遗传学与生活方式和环境因素的相互作用引起的复杂疾病。这项研究旨在确定通过使用机器学习模型有助于MS发展的遗传和环境风险因素之间的相互作用。这包括用于MS预测和随机森林,Rosetta和Logistic回归模型的逻辑回归模型,用于查找SNP与风险因素之间的相互作用。研究人群由1118个个体,5,615个,有MS和5,566个健康对照组成,并提供有关环境和生活方式暴露的遗传信息和问卷数据。遗传信息包括基因型数据,而问卷数据包括性别,20岁时BMI,吸烟习惯,暴露于阳光,单核细胞增多症状态和年龄。这项研究确定了可能与MS发展有关的潜在基因环境相互作用。这些相互作用的含义将需要在未来的研究中得到进一步验证。使用基于网络的方法确定了MS疾病模块,可用于进一步分析以鉴定涉及MS的中心基因。这项研究的结果可能会更好地了解疾病发育和发病机理,并有助于采取个性化干预措施,以最大程度地减少疾病发展的风险。
当今农学家、植物育种家及其管理人员面临的挑战包括在有限的预算下可持续地适应气候变化。此外,管理人员正在处理与从事类似计划和项目的不同组织相关的众多问题,导致对小农户缺乏可持续的影响。要将当前的粮食系统转变为更可持续和更具弹性的模式,需要有效的解决方案来交付和传达结果。必须解决物流、劳动力、基础设施和公平等挑战,同时适应日益不稳定的气候条件,这些条件会影响跨界病原体和害虫的生命周期。在此背景下,转变粮食系统远远超出了农民和植物育种家的范围,它需要来自工业、全球金融、交通、能源、教育和包括立法者在内的国家发展部门的大量贡献。因此,采取整体方法对于实现可持续和有弹性的粮食系统至关重要,以维持预计到 2050 年将达到 97 亿、到 2100 年将达到 112 亿的世界人口。截至 2021 年,近 1.93 亿人受到粮食不安全的影响,比 2020 年增加了 4000 万人。与此同时,数字世界正在迅速发展,数字经济估计约占全球国内生产总值的 20%,这表明即使在受粮食不安全影响的地区,数字技术也越来越容易获得。利用这些技术可以促进气候智能型品种的开发,这些品种可以有效适应气候变化、满足消费者偏好并满足人类和牲畜的营养需求。作物中最重要的经济性状由多个基因座控制,通常具有隐性等位基因。特别是考虑到非洲,这个大陆有几个农业
用于控制番茄尼科亚A. Orobanche的创新遗传方法A.1,Cuccurullo A.1,Contaldi F. 1,Navarro Garcia A. 1,盛宴G. 1,Camerlengo F. 2,D'Agostino N. 3,Facchiano A. 4,Scafuri B. 4,Rigano M. 3,Vurro M. 5,Cardi T. 1 Alessandro.nicolia@crea.gov.it 1农业研究委员会和农业经济分析(园艺研究中心和Florovivaismo)(Florovivaismo) - Pontecagnano的总部,通过Pontecagnano,Via Cavalleggeri,25 -84098 -84098 -pontecag Tuscia (Agricultural and Forestry Department, via San Camill De Lellis, 01100 Viterbo - VT) 3 University of Naples Federico II (Agricultural Department, via University, 100 - Portici - Na) 4 National Research Council (Institute of Food Sciences, via Roma 64, 83100 Avellino - AV) 5 National Research Council (Institute of Food Production Sciences, via Giovanni Amendola, 122/o,70126 Bari -ba)是属于类型Orobanche spp的植物。 和Phelipanche spp。 它们代表着地中海盆地地区各种农作物的严重风险,亚洲和欧洲的某些地区。 <进入意大利,番茄的种植,尤其是在空旷的地方,可能会受到P. ramosa物种的传播,这会造成严重的经济损害。 农艺管理技术通常不足以控制这些寄生植物,这些寄生植物在地面上执行大部分周期,并且可以以种子的形式生存多年。1,Contaldi F. 1,Navarro Garcia A.1,盛宴G. 1,Camerlengo F. 2,D'Agostino N. 3,Facchiano A. 4,Scafuri B. 4,Rigano M. 3,Vurro M. 5,Cardi T. 1 Alessandro.nicolia@crea.gov.it 1农业研究委员会和农业经济分析(园艺研究中心和Florovivaismo)(Florovivaismo) - Pontecagnano的总部,通过Pontecagnano,Via Cavalleggeri,25 -84098 -84098 -pontecag Tuscia (Agricultural and Forestry Department, via San Camill De Lellis, 01100 Viterbo - VT) 3 University of Naples Federico II (Agricultural Department, via University, 100 - Portici - Na) 4 National Research Council (Institute of Food Sciences, via Roma 64, 83100 Avellino - AV) 5 National Research Council (Institute of Food Production Sciences, via Giovanni Amendola, 122/o,70126 Bari -ba)是属于类型Orobanche spp的植物。 和Phelipanche spp。 它们代表着地中海盆地地区各种农作物的严重风险,亚洲和欧洲的某些地区。 <进入意大利,番茄的种植,尤其是在空旷的地方,可能会受到P. ramosa物种的传播,这会造成严重的经济损害。 农艺管理技术通常不足以控制这些寄生植物,这些寄生植物在地面上执行大部分周期,并且可以以种子的形式生存多年。4,Scafuri B.4,Rigano M. 3,Vurro M. 5,Cardi T. 1 Alessandro.nicolia@crea.gov.it 1农业研究委员会和农业经济分析(园艺研究中心和Florovivaismo)(Florovivaismo) - Pontecagnano的总部,通过Pontecagnano,Via Cavalleggeri,25 -84098 -84098 -pontecag Tuscia (Agricultural and Forestry Department, via San Camill De Lellis, 01100 Viterbo - VT) 3 University of Naples Federico II (Agricultural Department, via University, 100 - Portici - Na) 4 National Research Council (Institute of Food Sciences, via Roma 64, 83100 Avellino - AV) 5 National Research Council (Institute of Food Production Sciences, via Giovanni Amendola, 122/o,70126 Bari -ba)是属于类型Orobanche spp的植物。和Phelipanche spp。它们代表着地中海盆地地区各种农作物的严重风险,亚洲和欧洲的某些地区。<进入意大利,番茄的种植,尤其是在空旷的地方,可能会受到P. ramosa物种的传播,这会造成严重的经济损害。农艺管理技术通常不足以控制这些寄生植物,这些寄生植物在地面上执行大部分周期,并且可以以种子的形式生存多年。是一种基于最先进的辅助进化技术(基因组编辑)和使用探针线的多样化遗传方法,又是基于使用凹线的使用。主要基因的主要基因的突变体(D27,CCD7,CCD8和MAX1),在自由基渗出液中发出的分子,负责土壤中种子植物种子种子在土壤中的膜,是通过与Cristpr的基因组编辑产生的。然而,由于植物中不必要的表型作用而导致的strigolattoni的生物合成阻塞(例如设置,尺寸降低),因此诱变CRISPR/CAS9的行为也针对负责其在自由基渗出液中运输的基因(SLPDR1和SLPDR2)。鉴于番红花中众所周知的刺激性线(ILS)的可用性,已经开始进行筛查,以突出染色体区域,该染色体区域随后使用耐药性用于构成适用于固定材料的sub-Sub-SubBub-Sublhe,这可能构成适合预生物学和研究的固定材料。<分为关键字:番茄,基因组编辑,Orobanche,Int Skull线,Strigolattoni。
植物转化仍然是功能基因组学和作物遗传改良最受追捧的技术,尤其是用于引入特定的新特性以及修改或重组已有特性。自 25 年前首次推出以来,转基因作物与许多其他农业技术一样,全球产量稳步增长。自首次使用农杆菌将 DNA 转移到植物细胞以来,不同的转化方法推动了分子育种方法的快速发展,将具有新特性的作物品种推向市场,而这些特性是传统育种方法难以实现或不可能实现的。如今,转化生产转基因作物是农业领域最快和最广泛采用的技术。植物基因组测序数量迅速增加,功能基因组学数据中的信息有助于了解基因功能,再加上新型基因克隆和组织培养方法,进一步加速了作物改良和特性发展。这些进步是值得欢迎的,也是使作物更能适应气候变化并确保产量以养活不断增长的人口所必需的。尽管取得了成功,但转化仍然是一个瓶颈,因为许多植物物种和作物基因型难以适应既定的组织培养和再生条件,或者转化能力较差。使用形态发生转录调控因子可以进行改进,但它们的广泛适用性仍有待检验。基因组编辑技术的进步和直接、非组织培养的转化方法为增强其他难转化作物品种的开发提供了替代方法。在这里,我们回顾了植物转化和再生的最新进展,并讨论了农业中新育种技术的机会。
摘要:女性最常见的脱发类型是女性雄激素性脱发 (FAGA),其特征是呈图案分布的进行性脱发。许多口服疗法,包括螺内酯(一种醛固酮拮抗剂)、雄激素受体阻滞剂(例如氟他胺/比卡鲁胺)、5-α-还原酶抑制剂(例如非那雄胺/度他雄胺)和口服避孕药,针对雄激素转化和与其各自受体结合的机制,因此可用于治疗 FAGA。尽管口服治疗 FAGA 取得了重大进展,但对于有妇科恶性肿瘤病史(全球女性最常见的癌症)的患者,其治疗可能仍是一个问题。在这篇综述中,我们重点关注抗雄激素对 FAGA 患者治疗的安全性。为此,我们在 PubMed 上利用相关搜索词进行了有针对性的文献综述。综上所述,螺内酯似乎对 FAGA 的系统治疗是安全的,即使在高危人群中也是如此。然而,其他药物对有妇科恶性肿瘤病史的患者是否安全仍存在普遍的不确定性,需要进一步研究评估其对 FAGA 和危险因素患者的长期安全性,以建立最佳风险评估和治疗选择方案。