量子计算的快速进展以及Shor's算法[12](如Shor算法)的存在,引发了用后量词加密术代替旧密码学的必要性。朝着这一目标,标准技术研究所(NIST)发起了量子后加密术的竞争。在本文中,我们在NIST竞争的最终主义者之一NTRU提交[6]中解决了一个公开问题。(未修改)量子随机甲骨文模型中(未修改的)最佳不对称加密填充(OAEP)的安全性已被称为[6]中有趣的开放问题。现有的量词后安全证明[14]需要对OAEP变换进行修改。(请参阅下面的详细信息。)随机Oracle模型[1]是一个强大的模型,在该模型中,假设存在包括对手在内的各方都可以访问的真正随机函数,则证明了加密方案的安全性。但在现实世界应用中,随机甲骨文将被加密哈希函数替换,并且该功能的代码是公开的,并且是对手所知道的。在[4]之后,我们使用量子随机甲骨文模型,在该模型中,对手可以在叠加中对随机甲骨文进行查询(即,给定输入的叠加,他可以得到输出值的叠加)。这是必要的,因为基于真实哈希函数的量子对手攻击方案必须能够评估叠加中的功能。因此,如果一个Quantum Security请求,则随机Oracle模型必须反映该功能。
量子信息领域发展迅速,因为它有望解决各种传统计算机无法解决的计算问题。然而,构建一台功能齐全的量子计算机是一项艰巨的任务,因为它的性能受到不可避免的退相干的影响。退相干消除了物质的量子性质,从而消除了量子计算相对于传统计算的优势。然而,对于特定的应用,一些精心设计的退相干有助于幺正量子演化,可能会大有裨益。在本文中,我讨论了两个这样的例子:量子随机游动 (QSW) 和混合量子经典退火 (HQCA)。QSW 将幺正量子游动的概念推广到额外的非幺正演化。这产生了定向游动。QSW 可以是连续时间的,也可以是离散时间的。在这项工作的第一部分,我提出了两种算法,用于在相干量子计算机上模拟特定的 QSW。第一种适用于连续时间 QSW,第二种适用于离散时间 QSW。在这项工作的第二部分,我提出了一种称为混合量子经典退火的方法来提高绝热量子计算 (AQC) 的性能,该方法应该找到某个目标汉密尔顿量的基态。HQCA 应该通过将量子比特系统耦合到工程热浴来增加最终基态概率。对单个量子比特和两个量子比特的 HQCA 性能进行了数值测试。
摘要—开发了一种获取传感器测量过程的贝叶斯网络 (BN) 表示的方法,以便从统一的角度处理传感器融合和管理问题。传感器数据中嵌入的不确定性、可靠性和因果信息用于构建传感器的 BN 模型。该方法用于为人道主义排雷建模探地雷达、电磁感应和红外传感器。采用结构和参数学习算法在 BN 模型中对地雷特征、传感器测量值和环境条件之间的关系进行编码。在存在异质土壤和不同环境条件的情况下,使用推理来估计目标特征。开发了一种基于 BN 模型的多传感器融合技术,以利用传感器测量值的互补性。通过相同的方法,可以获得 BN 分类器来估计目标类型。 BN 模型和分类器还计算所谓的置信度,以量化与特征估计和分类决策相关的不确定性。通过实施这些 BN 工具来检测和分类具有不同形状、大小、深度和金属含量特征的金属和塑料地雷,证明了该方法的有效性。通过 BN 融合,特征估计的准确度相对于单传感器测量提高了 64%,并且同时检测到和分类的物体数量增加了 62%。
Bellman在1950年代提出的动态编程(DP)的思想是最重要的算法技术之一。并行,许多基本和顺序简单的问题变得更具挑战性,并且对(几乎)工作有效的解决方案开放(即,与最佳顺序解决方案相比,最多是polygarogarithmic因子的工作)。实际上,顺序的DP al-gorithms采用许多高级优化,例如决策单调性或特殊数据结构,并且比直接解决方案获得更好的工作。许多这样的优化是不依次的,这为并行算法带来了额外的挑战,以实现相同的工作。本文的目的是通过平行经典,高度优化和实用的顺序算法来实现(几乎)(几乎)工作效率的ALLEL DP算法。我们显示了一个名为“ Cordon算法”的通用框架,用于并行DP算法,并使用它来解决一些经典问题。我们选择的问题包括最长增加的子序列(LIS),最长的常见子序列(LCS),凸/凹面最小重量亚序列(LWS),最佳字母树(OAT)等。我们展示了如何使用Cordon算法来实现与顺序算法相同的优化水平,并获得良好的并行性。我们的许多算法在概念上都很简单,我们将一些实验结果作为概念证明。
这项工作引入了全息量子计算,这是一种利用全息原理和ADS/CFT对应的新型范式,以解决量子信息处理中的关键挑战,例如可伸缩性和误差校正。通过在较高维空间的边界上对量子信息全息编码,我们提出了一个框架,与传统的基于Qubit的方法相比,该框架可显着改善可伸缩性和错误弹性。我们全面的全息量子量子组合的综合理论模型包括构建具有固有误差校正特性的全息量子误差校正代码,并构建较低的跨开销,以实现容错。我们提出了利用信息的几何编码的新颖性,例如在弯曲空间上量子步行和双曲线图中的路径求解,表明了潜在的加速和资源效率。此外,我们探索了全息框架内的标准量子算法(如量子傅立叶变换(QFT))的实现。本文还使用模拟量子模拟器,超导量子阵列和混合经典量词系统详细介绍了物理实施策略,从而突出了实现全息量子计算机的实用途径。我们的结果表明,全息量子计算不仅增强了量子计算的能力,而且还可以深入了解量子信息,时空和重力之间的基本联系。这种相互交流的方法在量子计算和基本物理学方面打开了新的边界,从而在量词后加密,量子模拟和加速科学发现中提供了潜在的突破。
许多机器学习算法的核心是使用随机变量 (randvars) 描述隐藏在数据中的行为或结构的大型概率模型。在有效机器学习算法激增之后,有效的推理算法成为焦点,以利用学习到的模型或进一步优化机器学习算法 (LeCun 2018)。通常,模型由已知个体 (常数) 池 (即已知宇宙) 及其之间的关系形成。处理个体集可以实现易于处理的推理 (Niepert and Van den Broeck 2014)。通过与行为相同的个体代表合作并仅在必要时查看特定个体,提升可以有效地处理个体集。如果根据患病人数对可能的流行病进行建模,那么所有患病的人对流行病的行为都相同。在参数因子 (parfactors) 中,用逻辑变量 (logvars) 参数化的随机变量紧凑地表示随机变量集 (Poole 2003)。一个 parfactor 不是为每个人指定一个关于患病者如何影响流行病的因子,而是作为所有人的模板。马尔可夫逻辑网络使用一阶逻辑公式进行紧凑编码 (Richardson and Domingos 2006)。已知宇宙意味着 parfactors 或马尔可夫逻辑网络中的 logvars 具有域,并且可能具有将域限制为特定 parfactors 或公式的某些常数的约束。提升推理算法
I. 引言燃料电池(FC)是一种将氢化学能转化为电能的装置,可用于从移动和固定电源系统到便携式设备等各种应用。FC 的工作原理早在 1839 年就被发现,但直到最近二十年,该领域的研究活动才显着增加,提高了 FC 的灵活性和可靠性 [1]。促使 FC 发展的最重要因素之一是化石燃料燃烧对环境的严重影响。考虑到可以利用可再生能源(太阳能、风能、地热能等)通过水电解生产氢气,聚合物电解质膜 (PEM) 燃料电池成为减少对化石燃料依赖的最清洁和最有前途的替代品之一 [2]。该领域的改进需要跨学科工作和许多领域新技术的开发。最重要的问题之一与开发系统地处理干扰和模型不确定性的稳健控制策略有关。例如,在可变负载跟踪期间,针对电池内部燃料-氧化剂协调问题的有效控制算法可以避免瞬时功率下降和电池膜的不可逆损坏。然而,从控制的角度来看,燃料电池堆代表着一项重大挑战,因为它们相关的子系统存在相互冲突的控制目标和复杂的动态[3]。例如,九阶非线性模型用于描述基于氢-空气供给堆的发电系统。在这种模型中,状态相互作用通常通过以下方式建模
介绍问题动机。量子算法已经在化学、密码学、机器学习和优化领域得到了发展(Lu 等人 2019 年;Shor 1999 年;Tiwari 和 Melucci 2019 年;Khairy 等人 2020 年)。一类称为量子变分算法的算法被设计用于优化和执行量子机器学习和分类工作负载(Benedetti 等人 2019 年)。虽然理论上很有希望,但现有的量子机器学习分类器是为未来大规模理想量子系统设计的。这是因为由于严重的硬件错误,在现有的近期中型量子 (NISQ) 计算机上加载数据、训练和测试样本具有挑战性(Schuld 和 Killoran 2019a;Jurcevic 等人 2021 年;Preskill 2018 年)。因此,现有的量子分类器已被证明仅对相对简单的二元分类任务有效(Schuld、Fingerhuth 和 Petruccione 2017;Grant 等人 2018)。正如我们的评估所证实的,现有的最先进方法对于多类分类无效(例如,八类图像分类的准确率不到 30%)。目前,缺乏在真实量子机器上执行多类分类任务的能力以供探索和改进。贡献。Quilt 通过向社区开源其框架和数据集,以便在 NISQ 量子机器上进行多类分类,专门弥补了这一空白。Quilt 做出了以下主要贡献:(1)Quilt 背后的一个关键思想是构建一组量子分类器来执行多类分类。
最近,在广泛的图形挖掘任务中深入研究并应用了预训练和微调图神经网络的范式。它的成功通常是对训练和下游数据集之间的结构一致性的表现,但是,在许多现实世界中,这并不成立。现有的作品表明,在使用香草微调策略时,预训练和下游图之间的结构差异显着限制了转移性。这种差异导致模型过度适应预训练图,并在捕获下游图的结构特性时造成困难。在本文中,我们将结构差异的基本原因确定为前训练和下游图之间生成模式的差异。此外,我们建议G-T Uning保留下游图的生成模式。给定下游图G,核心思想是调整预训练的GNN,以便它可以重建G graphon w的生成模式。但是,已知Graphon的确切重新构造在计算上是昂贵的。为了克服这一挑战,我们提供了一个理论分析,该分析建立了一组替代图形子的存在,称为任何给定的Graphon。通过利用这些图形碱基的线性组合,我们可以有效地近似w。这一理论发现构成了我们模型的基础,因为它可以有效地学习图形碱基及其相关系数。与现有的al-gorithm相比,G-T Uning在7个内域和7个室外转移学习实验中表现出一致的性能提高。
[摘要]天然药物(NMS)对于治疗人类疾病至关重要。在体内有效地表征其生物活性成分一直是NM研究中的重点和挑战。高性能液相色谱高分辨率质谱(HPLC-HRMS)系统具有高灵敏度,分辨率和精度,用于进行NMS的体内分析。但是,由于NMS的复杂性,常规数据获取,采矿和处理技术通常无法满足体内NM分析的实际需求。在过去的二十年中,已经开发了基于各种原理和al-gorithms的智能光谱数据处理技术,并应用于体内分析。因此,通过依靠这些技术而无需更改仪器硬件,通过依靠这些技术来取得改进。这些改进包括增强的仪器分析灵敏度,扩展的复合分析覆盖率,智能识别和对体内化合物的非目标的表征,为研究NMS的体内代谢以及筛选药理学活性成分提供了有力的技术手段。本综述总结了过去二十年中报道的Intelem MS数据处理技术的NMS体内分析策略的研究进度。它讨论了复合结构的差异,生物样品之间的变化以及人工智能(AI)神经网络算法的应用。此外,该评论还提供了对NMS体内跟踪潜力的见解,包括筛选生物活性成分和鉴定Phar-Macokinetic Markers。目的是为NMS的体内分析提供新技术的整合和开发。