1美国休斯顿大学休斯顿大学物理系77204,美国2杜克大学,北卡罗来纳州达勒姆大学27708,美国3 Helmholtz研究学院HESSE HESSE HESSE(HFHF)GSI HELMHOLTZ HELMHOLTZ中心GSI HELMHOLTZ CENTRIC for ION heave Ion Physicics fornis frankfurt,60438 Frankfurtirant frankfurtirant frankfurt。 Physik,Johann Wolfgang Goethe-Universität,Max-von-laue-STR。1,D-60438德国法兰克福5 GSIHelmholtzentrumfürSchwerionenforschungGmbh,Planckstrasse 1,D-64291 D-64291德国Darmstadt,德国6宾夕法尼亚州立大学,宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州16801,宾夕法尼亚州宾夕法尼亚州立大学Universit`A di Torino和INFN Torino大学,通过P. Giuria 1,I-10125,I-10125,意大利的I-10125,8物理学系和量子理论实验室,极端理论,伊利诺伊州芝加哥,伊利诺伊州芝加哥,伊利诺伊州芝加哥大学60607,美国9 Kadanoff理论中心,芝加哥大学,芝加哥,伊利诺伊州芝加哥大学6066637,美国芝加哥,
1国家物理与核工程研究所,Horia Hulubei(Ifin-hh),30,反应群岛,077125,Bucharest-Magurele,罗马尼亚2研究院D'Astromony et d'Astrophysique,Universitéde BruxellesUniversitélibrede Bruxelles,camus de la la Plain,cp de la plain,CP-226,1050 Brussels,1050 Brussels,1050 Brussels,1050 Brussels,1050 Brussels,1050 Brussels,1050 Brussels,1050 Brussels,1050 Brussels,1050年达姆施塔特(Darmstadt),64289德国达姆施塔特(Darmstadt),4 GSI Helmholtzentrum for重离子研究,64291德国达尔姆斯塔特(Darmstadt),5 Helmholtz研究学院Hessen f fief(HFHF),GSI HELMHOLTZENTRUM,HELMHOLTZENTRUM,HELMHOLTZENTRUM,用于重离子研究冈本,海岛,科比658-8501,日本7物理学系,奥斯陆大学,奥斯陆N-0316,奥斯陆,挪威8号洛莫诺索夫莫斯科州立大学,物理学院,119991,莫斯科,俄罗斯俄罗斯,高级科学和工业技术,俄罗斯,高级科学技术日本
作为多毛基质的跨膜蛋白酶γ-分泌酶在各种细胞中广泛存在。它通过底物裂解控制了多种重要的细胞活性。γ-分泌酶抑制剂(GSIS)通过阻断Notch裂解在癌症抑制中起作用,被认为是癌症的潜在治疗策略。目前,GSI在临床前模型中具有令人鼓舞的性能,但是在临床试验中,这种成功并不能很好地转化。近年来,许多突破性发现向我们展示了靶向γ-分泌酶治疗癌症的希望。在这里,我们在近30年内整合了来自γ-分泌酶及其抑制剂和癌症的大量数据,梳理和讨论γ-分泌酶和癌症之间的紧密联系,以及当前GSIS在癌症治疗中的潜力和问题。我们分析了当前GSI在临床试验中失败性能的可能原因,并为将来的研究领域提出建议。
成就:开发并进行了 4 项无人机系统测试,并使用 GSI 相机进行振动分析测试;使用 CamRanger2 演示了尼康向笔记本电脑的远程控制和实时流媒体传输,并使用 Velo FreeWave 演示了备用快门;进行了团队无人机飞行员培训;与 GDEB 飞行员一起进行了原型无人机摄影测量评估;于 2023 年底完成最终演示
癌细胞可塑性是三阴性乳腺癌 (TNBC) 化疗和靶向治疗失败的重要原因。治疗诱导的肿瘤细胞可塑性和相关耐药性的分子机制在很大程度上是未知的。使用全基因组 CRISPR-Cas9 筛选,我们研究了用 γ 分泌酶抑制剂 (GSI) 治疗的 NOTCH 驱动的 TNBC 的逃逸机制,并确定 SOX2 是 Notch 抑制耐药性的靶点。我们描述了 Notch 信号和 SOX2 之间的一种新型相互抑制反馈机制。具体而言,Notch 信号通过其 HEY 家族的靶基因抑制 SOX2 表达,而 SOX2 通过与 RBPJ 直接相互作用抑制 Notch 信号。这种机制形成了不同的细胞状态,其中 NOTCH 阳性 TNBC 更像上皮细胞,而 SOX2 表达与上皮-间质转化相关,诱导癌症干细胞特征和 GSI 耐药性。为了抵消单药治疗引起的肿瘤复发,我们分别评估了 GSI-紫杉醇和达沙替尼-紫杉醇联合治疗对 NOTCH 抑制剂敏感和耐药的 TNBC 异种移植的效果。这些独特的预防组合和二线治疗方案依赖于 TNBC 中的 NOTCH1 和 SOX2 表达,能够诱导肿瘤生长控制并减少转移负担。
●研究领域中微子物理学→双β衰变实验;中微子振荡,反应堆抗神经纤维。塑料闪烁体→研发以及塑料闪烁体在不同实验中的应用。在未来CBM(压缩的重型物质)实验中前旁观者检测器的hadronic Physics→R&D(Fair,GSI Darmstadt,德国)。在LSM(法国Modane)的地下实验的新技术→敏感的ra探测器;无ra无ISO5清洁室;反雷登设施。●合作
黑色素瘤是死亡率较高的皮肤癌,每年的发病率都在不断上升。在原发性和转移性黑色素瘤谱系中已经发现 Notch 信号通路元素的过度表达,并且与黑色素瘤的发展、生长、血管生成、转移和耐药性直接相关。因此,针对黑色素瘤中 Notch 的靶向治疗对治疗这种类型的癌症具有很高的潜力。在本综述中,我们旨在对针对 Notch 通路的黑色素瘤可能治疗方法进行叙述性综述。我们使用 MEDLINE (PubMed)、LILACS (虚拟健康图书馆) 和 Cochrane 图书馆数据库搜索了 2000 年至 2020 年期间发表的有关人类皮肤黑色素瘤 Notch 信号通路抑制剂的文献。对选定的文章进行了分析、总结、制表,并用于制作本叙述性综述。选定的 24 篇文章以及其中引用的文章主要介绍了针对 Notch 的靶向治疗、γ-分泌酶抑制剂 (GSI),但也介绍了胶质毒素、和厚朴酚、磷脂酶 A2、穿心莲内酯和单克隆抗体,但这些疗法并未直接用于黑色素瘤研究。这些文章中还发现了另一种间接干扰 Notch 信号通路的疗法,即 G9a 抑制剂。通过分析收集到的数据,可以得出结论,研究更深入的 GSI 可能不是治疗黑色素瘤的最佳选择,除非特定情况或与其他通路抑制剂同时使用。另一方面,其他化合物的使用具有更大的潜力,但需要更多的研究来证明其治疗人类皮肤黑色素瘤的有效性和可行性。
该药物会受到其他监测。这将允许快速识别新的安全信息。医疗保健专业人员被要求报告任何可疑的不良反应。有关如何报告不良反应的第4.8节。1。药用产品的名称Jyseleca 100毫克薄膜涂层的片剂Jyseleca 200毫克膜涂层片2。定性和定量成分Jyseleca 100毫克薄膜涂层的片剂,每个薄膜涂层的片剂含有filgotinib maleate,相当于100 mg filgotinib。具有已知作用的摄取,每100 mg膜包被片剂含有76 mg的乳糖(如一水合物)。jyseleca 200 mg薄膜涂层的片剂,每个薄膜涂层的片剂含有filgotinib maleate,相当于200毫克的filgotinib。具有已知作用的赋形剂,每个200 mg膜包被片剂含有152 mg的乳糖(如一水合物)。有关赋形剂的完整列表,请参见第6.1节。3。制药形式胶片涂层的片剂。jyseleca 100毫克胶片涂层的片剂米色12×7毫米,胶囊形,胶片涂层的平板电脑在一侧用“ GSI”和“ 100”在另一侧进行折叠。jyseleca 200毫克胶片涂层的片剂米色17×8毫米,胶囊形,薄膜涂层的平板电脑在一侧用“ GSI”和“ 200”在另一侧进行了折叠。4。临床细节4.1治疗指示类风湿关节炎Jyseleca用于治疗中度至重度活跃的活性类风湿关节炎的成年患者的反应不足或对一种或多种疾病调整抗rhe炎药物的反应不足或不宽容。jyseleca可以用作单一疗法或与甲氨蝶呤(MTX)结合使用。
CSM - 概念场地模型 EGLE - 环境、五大湖和能源部 FAV - 第 31 部分水质标准 水生生物值 最终急性值 FESL - 可燃性和爆炸性筛选水平 GSI - 地下水-地表水界面 NAPL - 非水相液体 MIOSHA - 密歇根州职业安全与健康管理局 MIOSHA PEL - 允许暴露限值 MIOSHA STEL - 短期暴露限值 PSIC - 颗粒物土壤吸入标准 标准 - 基于风险的筛选水平或场地特定标准 TS MSSL - 时间敏感介质特定建议临时行动筛选水平 VSIC - 挥发性土壤吸入标准
1 二.物理研究所,Justus-Liebig-Universit¨at,35392 Giessen,德国 2 GSI Helmholtzzentrum f¨ur Schwerionenforschung GmbH,64291 Darmstadt,德国 3 TRIUMF,温哥华,不列颠哥伦比亚省 V6T 2A3,加拿大 4 曼尼托巴大学物理与天文系,温尼伯,曼尼托巴省 R3T 2N2,加拿大 5 波兰科学院核物理研究所,PL-31 342 Krak´ow,波兰 6 玛丽居里大学物理研究所,PL-20 031 Lublin,波兰 7 维多利亚大学物理与天文系,维多利亚,不列颠哥伦比亚省 V8P 5C2,加拿大 8 不列颠哥伦比亚大学物理与天文系,温哥华,不列颠哥伦比亚省 V6T 1Z1,加拿大 9 物理与爱丁堡大学天文学系,爱丁堡 EH9 3FD,苏格兰,英国 10 西蒙弗雷泽大学化学系,本拿比,不列颠哥伦比亚省 V5A 1S6,加拿大 11 麦吉尔大学物理系,H3A 2T8 蒙特利尔,魁北克省,加拿大 12 斯特拉斯堡大学,CNRS,IPHC UMR 7178,F-67 000 斯特拉斯堡,法国 13 约克大学物理系,约克 YO10 5DD,英国 14 卡尔加里大学物理与天文学系,卡尔加里,艾伯塔省 T2N 1N4,加拿大 15 胡阿里布迈丁科技大学物理学院,BP 32,El Alia,16111 Bab Ezzouar,阿尔及尔,阿尔及利亚 16 Academy of Sciences, BG-1784 Sofia, Bulgaria 17 Helmholtz Forschungsakademie Hessen fr FAIR (HFHF), GSI Helmholtzzentrum fr Schwerionenforschung, Campus Gieen, 35392 Gieen, German 18 郑州大学物理与微电子学院,郑州 450001,中国(日期:2021 年 7 月 20 日)