人类脑电图 (EEG) 中刺激引起的窄带伽马振荡 (30-70 Hz) 与注意力和记忆机制有关,在自闭症、精神分裂症和阿尔茨海默病等精神健康疾病中是异常的。然而,由于 EEG 中的绝对功率随着频率的增加按照“1/f”幂律迅速下降,并且伽马波段包括线路噪声频率,这些振荡很容易受到仪器噪声的影响。先前记录刺激引起的伽马振荡的研究使用昂贵的研究级 EEG 放大器来解决这一问题。虽然低成本 EEG 放大器在主要依赖低频振荡(< 30 Hz)或稳态视觉诱发电位的脑机接口应用中已经变得流行,但它们是否也可以用于测量刺激引起的伽马振荡尚不清楚。我们使用一个低成本的开源放大器(OpenBCI)和一个传统的研究级放大器(Brain Products GmbH)记录脑电图信号,两者都连接到 OpenBCI 帽,在男性(N = 6)和女性(N = 5)受试者(22-29 岁)观看全屏静态光栅时,已知这些光栅会在部分受试者中诱发两种不同的伽马振荡:慢伽马和快伽马。虽然来自 OpenBCI 的脑电图信号噪声要大得多,但我们发现在 Brain Products 记录中表现出伽马反应的七个受试者中,六个在 OpenBCI 中也表现出伽马反应。尽管 OpenBCI 设置中存在噪声,但这些反应在 alpha(8-13 Hz)和伽马波段的光谱和时间曲线在 OpenBCI 和 Brain Products 记录之间高度相关。这些结果表明低成本放大器可能用于刺激诱发的伽马反应检测。
RaspberryPi 使用 Shield PiEEG 测量 EEG、ECG、EMG 和 EOG 本文介绍了用于通过单板计算机系列(RaspberryPi、OrangePi、BananaPi 等)读取信号的屏蔽 PiEEG 的硬件和软件。本文主要提供了如何实现该设备的技术信息。该设备旨在熟悉神经科学,是开始进行 EEG 测量的最简单方法之一。 Ildar Rakhmatulin,博士,PiEEG,ildarr2016@gmail.com 来源 https://github.com/Ildaron/EEGwithRaspberryPI 演示 https://youtu.be/uK8QF2liO5U 关键词:RaspberryPi 和 EEG、ECG、EMG 和 EOG;脑机接口;RaspberryPi 屏蔽 1. 简介 脑机接口是一种读取脑信号的设备,以识别可用于实际目的的任何相关性。 2021 年,我们开发了脑机接口 - ironbci [1,2,3],但芯片短缺大大增加了设备的成本,之后我们改用 PiEEG 屏蔽,这使得降低设备成本和简化安装过程成为可能。PiEEG 设备在会议 [4] 和出版物 [10] 中进行了一般性介绍。在本文中,我们将更多地关注该设备实现的技术细节。2. 安全建议开发的设备仅针对 Raspberry Pi 进行了测试。在测试期间,禁止将设备连接到电源,这是出于安全考虑并避免网络干扰。通过电网供电时不能使用此设备,并且只能在使用 5V 电池(容量不超过 2000 mAh)时使用它。图 1 是设备完整组装的概览。
在众多量子计算模型中,量子电路模型是与当前量子硬件交互的最著名和最常用的模型。量子计算机的实际应用是一个非常活跃的研究领域。尽管取得了进展,但对物理量子计算机的访问仍然相对有限。此外,现有机器容易受到量子退相干导致的随机误差的影响,并且量子比特数、连接性和内置纠错能力也有限。因此,在经典硬件上进行模拟对于量子算法研究人员在模拟错误环境中测试和验证新算法至关重要。计算系统变得越来越异构,使用各种硬件加速器来加速计算任务。现场可编程门阵列 (FPGA) 就是这样一种加速器,它是可重构电路,可以使用标准化的高级编程模型(如 OpenCL 和 SYCL)进行编程。 FPGA 允许创建专门的高度并行电路,能够模拟量子门的量子并行性,特别是对于可以同时执行许多不同计算或作为深度管道的一部分执行的量子算法类。它们还受益于非常高的内部内存带宽。本文重点分析了应用于计算流体动力学的量子算法。在这项工作中,我们介绍了基于模型格子的流体动力学公式的新型量子电路实现,特别是使用量子计算基础编码的 D1Q3 模型,以及使用 FPGA 对电路进行高效模拟。这项工作朝着格子玻尔兹曼方法 (LBM) 的量子电路公式迈出了一步。对于在 D1Q3 晶格模型中实现非线性平衡分布函数的量子电路,展示了如何引入电路变换,以促进在 FPGA 上高效模拟电路,并利用其细粒度并行性。我们表明,这些转换使我们能够在 FPGA 上利用更多的并行性并改善内存局部性。初步结果表明,对于此类电路,引入的变换可以缩短电路执行时间。我们表明,与 CPU 模拟相比,简化电路的 FPGA 模拟可使每瓦性能提高 3 倍以上。我们还展示了在 GPU 上评估相同内核的结果。
Karl Berggren 1,36,36,Qiangfei Xia 2,36,Konstantin K Likharev 3,Dmitri B Strukov 4,Hao Jiang 5,Thomas Mikolajick 6,Damien Querlioz 7,Martin Salinga,Martin Salinga,John Shu 8,Erickson,Erickson,19 Hoskins 13,Matthew W Daniels 13栗,Advait Madhavan 13,14,James A Liddle 13,Jabez J 13,McClellan,McClellan,Jennifer Rupp 16,17,Stephen S Nonenmann 18,Kwang-to ,保罗·利马(Paul Lima),亚历山大·费拉里(Alexander Ferrari),25 Nder n Tait 26,Yichen Shen 27,Huaiyu Meng 27,Charles Roques-Carmes 1,Zengguang Cheng 28,29栗,Harish Bhaskaran 28,Deep Jariwala 30 4和Arijit Raychowdhury 35
初步沟通 基于人工智能的车载自动列车障碍物距离估计 Ivan ĆIRIĆ*、Milan PAVLOVIĆ、Milan BANIĆ、Miloš SIMONOVIĆ、Vlastimir NIKOLIĆ 摘要:本文提出了一种新方法,利用图像平面单应性矩阵来改进对摄像机和成像物体之间距离的估计。该方法利用两个平面(图像平面和铁轨平面)之间的单应性矩阵和一个人工神经网络,可根据收集的实验数据减少估计误差。SMART 多传感器车载障碍物检测系统有 3 个视觉传感器——一个 RGB 摄像机、一个热成像摄像机和一个夜视摄像机,以实现更高的可靠性和稳健性。虽然本文提出的方法适用于每个视觉传感器,但所提出的方法是在热成像摄像机和能见度受损场景下进行测试的。估计距离的验证是根据从摄像机支架到实验中涉及的物体(人)的实际测量距离进行的。距离估计的最大误差为 2%,并且所提出的 AI 系统可以在能见度受损的情况下提供可靠的距离估计。 关键词:人工神经网络;自动列车运行;距离估计;单应性;图像处理;机器视觉 1 简介 通过遵循自动化趋势,可以大大提高铁路货运的质量和成本竞争力,以实现经济高效、灵活和有吸引力的服务。今天,自动化和自主操作已经在公路、航空和海运中变得普遍。现代港口拥有自动导引车 (AGV),可将集装箱从起重机运送到轨道旁、仓库、配送中心,而自动驾驶仪是航空公司和大型货船的标准配置,不需要大量机上人员。自动驾驶汽车和卡车的发展已经进入了一个严肃的阶段。此外,轨道交通自主系统的发展主要出现在公共交通服务领域(无人驾驶地铁线路、轻轨交通 (LRT)、旅客捷运系统和自动引导交通 (AGT))。基本思想是使用一定程度的自动化,将操作任务从驾驶员转移到列车控制系统(例如 ERTMS)。根据国际电工委员会 (IEC) 标准 62290-1,列车自主运行 (ATO) 是高度自动化系统的一部分,减少了驾驶员的监督 [1]。对于完全自主的列车运行,列车操作员的所有活动和职责都需要由多个系统接管,这些系统可以感知环境并俯瞰现场,检测列车路径上的潜在危险物体并做出相应的正确反应 [2-6]。障碍物检测系统作为 ATO 系统的主要部分,障碍物检测系统需要根据货运特定和一般用例(例如 EN62267 和/或自动化领域的相关项目)来监控环境。为了满足严格的铁路标准和法规,障碍物检测系统 (ODS) 应在具有挑战性的环境和恶劣的能见度条件下工作。ODS 是一种具有硬件和软件解决方案的机器视觉系统(图 1),用于提供有关铁路上和/或其附近障碍物的可靠信息,并估算从系统到检测到的障碍物的距离 [7]。该系统需要实时运行,并在不同的光照条件下运行(白天、
我们研究了硬件规格如何影响最终运行时间和在容错机制下实现量子优势所需的物理量子比特数。在特定时间范围内,不同的量子硬件设计的代码周期时间和可实现的物理量子比特数可能会相差几个数量级。我们从对应于特定化学应用的量子优势的逻辑资源需求开始,模拟 FeMo-co 分子,并探索使用额外的量子比特可以在多大程度上缓解较慢的代码周期时间。我们表明,在某些情况下,只要有足够的物理量子比特,代码周期时间明显较慢的架构仍然能够达到理想的运行时间。我们利用了之前在纠错表面码领域考虑过的各种空间和时间优化策略。特别是,我们比较了两种不同的并行化方法:表面代码单元游戏和 AutoCCZ 工厂。最后,我们计算了在实际构成威胁的短时间内破解比特币网络中 256 位椭圆曲线密钥加密所需的物理量子比特数。使用表面代码、1 ls 的代码周期时间、10 ls 的反应时间和 10 3 的物理门错误,在一小时内破解加密需要 317 10 6 个物理量子比特。而要在一天内破解加密,则需要 13 10 6 个物理量子比特。
深度学习模型通过在各种任务中实现前所未有的准确性,在大多数应用程序领域中提供了极其成功的方法。对于音频应用程序,尽管生成模型的巨大复杂性允许处理复杂的时间结构,但它通常排除了它们在资源约束硬件平台上的实时使用,尤其是在该领域的普遍性。缺乏足够的轻质模型是基于深层模型的独立工具的开发的障碍,这对音乐家和作曲家的现实生活产生了重大限制。最近,我们通过在可以处理其复杂性的足够硬件平台上实现轻巧的生成音乐音频模型来构建了第一个基于深度学习的音乐仪器。通过嵌入此深层模型,我们提供了一个可控且灵活的创意硬件接口。更确切地说,我们将工作重点放在Eurorack合成器格式上,该格式提供了控制电压(CV)和门机制,允许与其他经典的Eurorack模块进行交互。
视频人工智能系统的成本和收益如何?视频人工智能:初始成本和长期收益 投资人工智能是许多公司经常谈论的事情。但您实际上投资的是什么?成本是多少?长期收益是什么?在本白皮书中,我们将解释如何以及为何投资视频人工智能。 为什么要投资视频人工智能?主要原因是视觉图像包含非常重要的数据。通过使用这些数据,您可以作为一家公司脱颖而出,目标是为您的客户提供更好的解决方案。 通过投资视频人工智能 (Video AI),您可以从视频数据中获得正确的智能信息。简而言之,人工智能 (AI) 以高度智能的方式识别、分类和索引镜头。在此基础上,可以搜索、编辑和量化收集和分类的数据。人工智能软件实时处理视频数据,以便您可以在发生检测警报时快速评估和响应。此外,可以轻松检索现有视频片段。因此,您可以快速搜索数千小时的镜头以查找所需的事件。当 AI 系统识别、分类和索引素材时,会产生额外的数据。从长远来看,这些收集到的元数据可以成为有价值的商业智能的额外来源。可以使用各种商业智能工具清晰地以图形方式显示这一点。当您考虑实施视频 AI 系统时,重要的是要正确评估总购置成本。换句话说,就是总拥有成本 (TCO)。当然,这些成本会根据每个组织的独特需求和情况而有所不同。本白皮书将概述系统要求、基础设施、网络和实施方面的各种实施因素和相关成本考虑因素。以及该产品可以提供的巨大长期节省。系统要求视频 AI 是一种智能软件技术,但为了使软件正常运行,外围设备必须到位。提前清楚了解所需的系统要求非常重要。IP 摄像机的数量、所需的 AI 功能以及安装类型(本地、远程或云)的组合决定了所需的系统要求。一些视频 AI 平台易于与已安装的 IP 摄像机结合使用。在销售过程中提出这一点很重要,因为它会影响初始投资。一个好的视频 AI 实施合作伙伴可以就所需的硬件为您提供建议。为了达到预期的效果,确定摄像机的类型和摄像机的位置非常重要。基础设施视频 AI 解决方案的基础设施因需求而异。有些人希望为多个位置提供集成解决方案,而其他人可能会考虑将视频 AI 用于单个位置。IP 摄像机、AI 服务器和 NVR/VMS 系统都可以位于一个物理位置本地,也可以位于多个物理位置。将物理位置上的摄像机与(公共)云中的软件相结合也是可能的。同样,正确的 AI 实施合作伙伴的作用非常重要。
摘要 我们介绍了 Qibo,这是一款新型开源软件,充分利用硬件加速器,用于快速评估量子电路和绝热演化。人们对量子计算日益增长的兴趣和量子硬件设备的最新发展推动了开发注重性能和使用简单性的新型先进计算工具。在这项工作中,我们引入了一个新的量子模拟框架,使开发人员能够将硬件或平台实现的所有复杂方面委托给库,以便他们可以专注于手头的问题和量子算法。该软件从头开始设计,以模拟性能、代码简单性和用户友好界面为目标。它利用硬件加速,如多线程中央处理单元 (CPU)、单图形处理单元 (GPU) 和多 GPU 设备。