1 ASAcampus 联合实验室,ASA 研究部,实验和临床生物医学科学系“ Mario Serio ”,佛罗伦萨大学,意大利佛罗伦萨,2 荷兰实验支持中心 (DESC),阿姆斯特丹骨科中心 (ABC),阿姆斯特丹大学医学中心,VU 大学医学中心 (VUmc) 和阿姆斯特丹牙科学术中心 (ACTA),口腔颌面外科/口腔病理学系,荷兰阿姆斯特丹,3 欧洲航天局 (ESA),欧洲空间研究和技术中心 (ESTEC),TEC-MMG,荷兰诺德维克,4 转化研究实验室“压力与免疫”,慕尼黑大学医院,德国慕尼黑,5 空间技术研究与工程中心 - CREST,航空热机械服务 - ATM,布鲁塞尔自由大学,比利时布鲁塞尔
随着衰老的慢性变性疾病的发生率的抽象增长使伤口护理成为社会经济负担,并且不断地需要一种新颖,经济和高效的伤口愈合治疗。血小板通过调节伤口愈合的不同机械阶段,例如促进和稳定凝块,在止血和血栓形成中具有至关重要的作用。富含血小板的血浆(PRP)含有高浓度的血小板,比幼稚的血浆具有自体源,没有免疫原性不良反应。因此,PRP引起了人们的关注,作为增强康复过程的治疗方法。自过去几十年以来,已经进行了大量的研究和临床试验,以利用PRP在伤口愈合/Tis-Sue再生中的广泛作用。尽管这些严格的研究及其在多元化的医疗领域中的应用,但由于大型样品,对照临床试验和标准方案的稀少,基于PRP的疗法的效率仍在不断提及。本综述系统地描绘了伤口愈合的过程和血小板参与Tis-Sue修复机制。此外,重点是PRP,其准备方法,处理,
摘要 各个领域的工业革命导致对能源的需求增加。因此,这不仅对发电站,而且对配电站也带来了许多挑战。能源需求的增长使系统变得更加复杂,从而导致对更高可靠性、效率、安全性以及环境和能源可持续性问题的要求大幅增加。由于传统电网的缺点,网络的巨大发展促使许多公司转向使用智能方法,即目前称为“智能电网”。智能电网被认为是改进传统电网的最佳解决方案。这两个电网相似,但智能电网使传统电网的所有部分都变得更加智能,以实现我们需要智能电网实现的目标。本文旨在概述智能电网并讨论智能电网发电的一些结果。该系统已通过 MATLAB Simulink 软件验证。关键词:。智能电网、风力发电、光伏发电。
人工智能在预测整形外科皮瓣结果中的作用:系统评价方案 Sabreena Moosa,医学博士候选人 [1]*,Robert Dydynsky,医学博士候选人 [1] [1] Michael G. DeGroote 医学院,麦克马斯特大学,汉密尔顿,ON L8S 4K1 *通讯作者:sabreena.moosa@medportal.ca 简介:游离皮瓣手术包括重建各种组织缺损。皮瓣失败和感染、缺血等并发症仍然是皮瓣手术后令人担忧的问题,目前的术后护理标准是频繁的床边监测。机器学习模型等人工智能可以帮助外科医生进行术后监测和预测并发症。本系统评价的目的是提供一个框架,用于分析使用人工智能评估皮瓣手术结果和预测术后并发症的现有文献。方法:将使用 EMBASE 和 MEDLINE(1974 年至 2021 年 10 月)进行系统回顾,以确定相关文献。这将包括研究皮瓣手术术后环境中使用的人工智能和机器学习模型的研究。主要结果将包括评估基于这些模型评估皮瓣手术后结果的准确性,包括:皮瓣成功率、愈合和术后长达 1 个月的并发症。次要结果包括分析使用机器学习模型评估皮瓣手术后结果的利弊。研究将由两名独立审阅者筛选;将使用 Cochrane 偏倚风险工具评估偏倚风险,并使用 QUADAS-2 工具评估方法学质量。讨论:该协议将提供综述框架,总结当前探索人工智能对皮瓣手术结果的作用的文献。结果将有助于为外科医生提供当前应用的概述,并确定潜在的进一步研究和开发领域。结论:由于目前的临床实践是定期的床边监测,整合人工智能可以使该过程对患者更高效、更准确、更安全,并减少劳动力负担或医疗保健系统成本。本综述有助于确定潜在和改进的领域,从而进一步帮助实现皮瓣手术后的成功结果。关键词:人工智能;机器学习;皮瓣手术;结果;并发症;术后;监测;皮瓣成功介绍皮瓣手术
由于其导热系数如此之高(30 W mK 1 ),因此来源广泛、价格低廉并且适合于批量填充。它应用于目前商业化的TIM(例如导热垫片和导热凝胶)以提高导热系数。然而,传统的热固性Al 2 O 3 /PDMS复合材料在使用过程中容易受损出现裂纹,损坏后材料的导热系数或其他功能会降低。自修复的概念来自于自然生物的愈合过程。材料在自我修复之后可以保持其性能。如果这些TIM具有自修复能力,可以自动修复其受到的损伤,将有助于长期使用以及增强可靠性和耐用性。材料固有的自修复能力主要通过动态可逆键实现,例如二硫键、20,21 Diels-Alder 反应、22,23
由于其导热系数如此之高(30 W mK 1 ),因此来源广泛、价格低廉并且适合于批量填充。它应用于目前商业化的TIM(例如导热垫片和导热凝胶)以提高导热系数。然而,传统的热固性Al 2 O 3 /PDMS复合材料在使用过程中容易受损出现裂纹,损坏后材料的导热系数或其他功能会降低。自修复的概念来自于自然生物的愈合过程。材料在自我修复之后可以保持其性能。如果这些TIM具有自修复能力,可以自动修复其受到的损伤,将有助于长期使用以及增强可靠性和耐用性。材料固有的自修复能力主要通过动态可逆键实现,例如二硫键、20,21 Diels-Alder 反应、22,23
神经嵴衍生细胞(NCDC)在胎儿期以神经嵴细胞的形式存在,并分化为腭细胞,也存在于成人腭组织中,但其作用尚不明确。本研究用EGFP标记来自P0-Cre/CAG-CAT-EGFP(P0-EGFP)双转基因小鼠的NCDC,然后分析其在腭黏膜伤口愈合中的作用。作为腭伤口愈合模型,切除P0-EGFP小鼠左侧腭黏膜,在愈合区域检测干细胞标志物和角质形成细胞标志物。从正常腭黏膜提取NCDC,用干细胞培养基预培养14 d,然后分化为角质形成细胞或成骨细胞以分析多能性。伤口愈合过程从第二天的边缘粘膜再生开始,第 28 天整个伤口区域被含有 EGFP 阳性细胞 (NCDC) 的再生粘膜覆盖。EGFP 阳性细胞占愈合口腔粘膜中约 60% 的细胞,其中 65% 表达干细胞标志物 (Sca-1 + 、PDGFR α + ),30% 表达角质形成细胞标志物 (CK13 + )。在培养的腭粘膜细胞测试中,大约 70% 的 EGFP 阳性细胞表达干细胞标志物 (Sca-1 + 、PDGFR α + )。此外,在分化诱导条件下,培养的 EGFP 阳性细胞被成功诱导分化为角质形成细胞和成骨细胞。我们得出结论,NCDC 作为干细胞存在于成人腭组织中,并有可能在伤口愈合过程中分化为各种细胞类型。
Kafrelsheikh大学兽医学系,Kafrelsheikh,Kafrelsheikh 33516,埃及B病理学系,Kafrelsheikh大学兽医系,Kafrelsheikh大学,Kafrelsheikh,Kafrelsheikh 33516,33516加弗莱斯科大学水生和渔业科学系的加工和生物技术系,Kafrelsheikh,Kafrelsheikh 33516,埃及埃及E学院,TABUK大学生物学系,TABUK 47913,SAUDIIARABIA FABUK 47913 19247, Saudi Arabia g Department of Hematology/Pediatric Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia h Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516,埃及
摘要 近十年来,自修复材料在空间应用领域变得极具吸引力,这是由于其技术的发展以及随之而来的空间系统和结构设计可能性,这些系统和结构能够在与微流星体和轨道碎片撞击、意外接触尖锐物体、结构疲劳或仅仅是由于材料老化而造成损坏后进行自主修复。将这些新材料整合到航天器结构设计中将提高可靠性和安全性,从而延长使用寿命和任务。这些概念将为建立新的轨道站、在月球上定居和人类探索火星带来决定性的推动力,从而实现新的任务方案。本综述旨在介绍最新、最有前景的空间应用自修复材料和相关技术,以及与它们当前的技术局限性以及空间环境的影响相关的问题。在介绍太空探索和自修复概念的前景和挑战之后,简要介绍了空间环境及其对材料性能的可能影响。然后对自修复材料进行详细分析,从一般的内在和外在类别到具体的机制。