基于激光的直接能量沉积(L-DED)用吹粉末可以同时或连续处理一个组件中不同粉末材料,因此提供了添加剂多材料制造的可能性。因此,该过程允许在空间解析的材料分配和制造锋利甚至分级的材料过渡。在这一贡献中,应提出来自多材料L-DED的两个主要研究领域的最新结果 - (i)自动化和(ii)由原位合成的高熵合金(HEAS)快速合金开发 - 应提出。首先,开发了自动化的多物质沉积过程,该过程可以自动制造三维标本。为此,进行了关于粉末喂养动力学和过程区域中产生的粉末混合物的沉积系统的表征。获得的系统特性用于实现指定粉末混合物的三维沉积。通过能量分散性X射线光谱,扫描电子显微镜和微硬度测量通过能量X射线镜头进行分析。这项研究表明,L-DED的准备时间不断增加,以制造多层质量成分。第二,提出了DED快速合金开发的最新结果。通过同时使用多达四个粉末喂食器,研究了AL - Ti - Co - CR - CR - FE - FE - Ni Hea系统中的各种合金组成。为此,有益地使用了量身定制的测量系统,例如内部开发的粉末传感器。该研究显示了AL对相形成和产生的机械性能的影响,并证明了L-DED在减少新合金开发时间的潜力。
摘要:提出了高渗透合金(HEAS)作为各种极端环境的材料,包括填充和融合辐射应用。为了承受这些苛刻的环境,必须根据其给定的应用量身定制材料处理,这是通过增材制造过程实现的。但是,由于对辐射对HEA性能的影响不完全了解,因此辐射应用机会仍然有限。在这封信中,我们研究了添加性制造的难治性高渗透合金(RHEAS)对氦(HE)离子轰击的响应。通过分析显微镜研究,我们显示了合金组成与气泡大小和密度之间的相互作用,以证明增加组成复杂性如何限制HE气泡效应,但是在选择适当的组成元件时必须注意。
由于合金的成分空间几乎是无限的,因此设计耐腐蚀高熵合金 (CR-HEA) 具有挑战性。为此,需要高效可靠的高通量探索性方法。为此,当前的工作报告了一种基于第一性原理的方法,利用功函数、表面能和耐腐蚀性之间的相关性(即,根据定义,功函数和表面能分别与合金固有的耐腐蚀性成正比和反比)。使用由密度泛函理论 (DFT) 计算得出的离散表面能和功函数,评估了 fcc Co-Cr-Fe-Mn-Mo-Ni 功函数和表面能的两个贝叶斯 CALPHAD 模型(或数据库)。然后使用这些模型对不同的 Co-Cr-Fe-Mn-Mo-Ni 合金成分进行排序。观察发现,排序后的合金具有与之前研究的耐腐蚀合金相似的化学特性,这表明所提出的方法可用于可靠地筛选具有潜在良好固有耐腐蚀性的 HEA。
服务过程中工程材料的突然损害始终是一个挑战,材料科学家已经提出了许多努力,以解决此问题。这激发了各种合金的设计,例如不锈钢,变形和隔离的钢,亚稳态Ti合金,并最近开发了高熵合金(HEA)。从单相到多相HEAS的连续不断发展的旅程表现出了出色的工作性能,这是金属系统中改善抗衰竭性所必需的。与此相一致,最近开发的变换高熵合金(T-Heas)在常规处理,严重变形和激光辅助的3D印花后,在提高的损伤耐受性(σUTS〜1.2 GPA和延性〜20%)方面表现出有趣的结果。这些结果归因于由于缺陷附近转化诱导的可塑性(TRIP)效应,应力浓度区域内的局部WH活性。结果,这些T-HEAS中存在的缺陷是通过显示出明显的转化诱导裂纹延迟(TRICR)效应来延迟损害的位点,从而提高了服务过程中的故障阻力。
14.1 – 简介 在增材制造工艺中,使用化学或物理过程将液体、粉末、线材或箔片逐层堆积起来,形成部件。直接能量沉积 (DED) 或粉末床熔合 (PBF) 可用作增材制造工艺,其中使用金属粉末或线材在现有部件的基材或自由曲面上打印致密的金属层 [1]。金属粉末(纯元素、元素混合物、母合金)或金属线材高速熔化,并瞬间逐层沉积在相应的金属基材上。在所谓的激光熔覆 [2] 中,该技术通常用于涂覆涂层或工具维修。与减材工艺相比,增材工艺节省时间和资源,因为材料只在需要的地方添加。通常使用成熟的钢、镍基合金或钛合金。但是,也可以通过粉末混合物的原位合金化获得全新的材料,或者通过在堆积过程中改变粉末混合物的成分来创建材料梯度 [3]。高熵合金 (HEA) 代表了未来应用的一个新研究领域。它们由大量元素形成,所有元素都以类似的高浓度存在,例如由锆、铌、铪、钽或钨组成的合金 [4]。形成的合金通常可以是单相或多相混合晶体。HEA 通常可以结合高强度和非常好的延展性。原位合金化为未来生产具有出色高温机械性能的新型金属部件提供了快速材料筛选的独特可能性。长期以来,由于耐火合金的熔点高,其制造仅限于真空电弧重熔。使用基于激光的方法,这些金属被聚焦的激光束局部熔化并沉积在增材制造中。除了材料开发之外,增材制造还为组件设计提供了极大的设计自由度,例如,可用于开发基于仿生原理的负载优化设计 [5]。为了增加增材制造的多功能性,可以使用激光后处理来修改采用该技术生产的零件的表面[6-9]。市面上有不同类型的激光源,这确保了它们适用于广泛的应用,连续波 (cw) 激光器通常用于降低表面粗糙度,而脉冲激光器则用于修改表面功能并提高几何精度。即使有可能取代增材制造工艺链中的某些步骤,当最终制造的组件的局部区域需要特定特性时,采用激光后处理作为附加步骤也被证明是有益的。
史前史研究与回顾研讨会 (SERP),Dep.西班牙巴塞罗那大学历史和考古学 b 奥地利维也纳大学进化人类学系 c 奥地利维也纳大学人类进化与考古科学(HEAS) d 西班牙巴塞罗那大学考古学研究所(IAUB) e 西班牙巴塞罗那大学动物与生物学系 f 西班牙萨拉曼卡大学史前和考古学系 GIR PREHUSAL g 坎塔布里亚国际史前考古研究所(IIIPC),(坎塔布里亚大学-坎塔布里亚古比尔诺-斯潘塔桑塔纳 UMRNHNR,2007 09 考古动物学、植物考古学:社会、实践和环境。 MUS ́国家自然,d ́ eme otneme»&Institut Inee cnrs«Environnement et ́ ecologie»,法国,法国考古学学院,考古学和海上文化实验室38 HAIFA,以色列K考古研究所,耶路撒冷大学,以色列L奥地利考古研究所 - 史前奥地利科学学院我,乔治亚Q Moravsk' 4105,以色列U Sociedad de Ciencias Aranzadi,Donostia,西班牙,v Mus vus ́ee d'Arch́
高熵合金 (HEA) 具有几乎无限数量的可能成分,引起了材料科学的广泛关注。除了耐磨和耐腐蚀涂层之外,它们作为可调电催化剂的应用最近也成为关注的焦点。另一方面,HEA 表面的基本特性,如原子和电子结构、表面偏析和扩散以及 HEA 表面的吸附,却鲜有探索。研究的缺乏是由于单晶样品的可用性有限。在本研究中,报道了面心立方 (fcc) CoCrFeNi 薄膜在 MgO(100) 上的外延生长。通过 X 射线衍射 (XRD)、能量色散 X 射线光谱 (EDX) 和透射电子显微镜 (TEM) 对其表征表明,具有均匀且接近等摩尔元素组成的层沿 [100] 方向取向并与它们形成突变界面的基材对齐。采用 X 射线光电子能谱 (XPS)、低能电子衍射 (LEED) 和角分辨光电子能谱研究 CoCrFeNi(100) 的化学成分和原子及电子结构。结果表明,外延生长的 HEA 膜有可能填补样品间隙,从而可以对整个成分空间内明确定义的 HEA 表面的性质和过程进行基础研究。
通过引入最新的处理方法来证明其在众多领域的潜力。这项技术的显着增长部分是由于其制造零件的能力所推动的,这些零件在各个行业中都可以具有性能和商业利用。金属AM工艺的适应性促使了各个行业的创新,其应用涵盖了防御,航空航天,医疗,牙科,汽车和油气领域的应用。每个行业都受益于金属AM的独特能力;例如,现在可以实现材料效率,设计灵活性,减少交付时间以及通过传统方法无法实现的轻质和复杂结构的创建。因此,本评论文章分析了金属AM,描述了其类型,技术挑战,环境和业务考虑,能源消耗,应用和未来趋势。最初,本文介绍了金属AM的主要类别,详细阐述了其机制和工作原则,后来,它重点关注金属AM的工业贡献,技术挑战和业务考虑。这项技术的前景突出了新兴的材料和技术,例如机器学习(ML)和人工智能(AI),以预测缺陷,优化过程参数并提高产品质量。此外,正在讨论高级材料(例如高熵合金(HEAS))以扩大AM零件的功能。Metal AM通过在行业中提供自定义,效率和可持续性来塑造制造业的未来。本文旨在提供对金属AM的一般理解,同时强调关键的技术进步和未来的研究方向,以进一步扩展其在各个部门的应用。
具有多个主元素和不同名称的材料,例如高渗透合金(HEAS)和复杂的浓度合金(CCA),1引起了很大的关注,因为它们的出色结构,机械和功能性能可能会导致很多应用。本期特刊涵盖了各种各样的新兴主题,涵盖了多主体元素合金(MPEAS)的制造,处理,结构和特性。从处理开始,Mooraj等。2应对添加性生产金属合金中印刷缺陷的挑战。他们的研究提供了对印刷缺陷起源的基本见解及其对添加性生产的Cocrfeni Hea的机械性能的深远影响。通过理解和缓解印刷缺陷,可以显着改善加上制造金属组件的质量和可靠性。依赖制造技术(例如悬浮炉)的许多开创性工作允许进行非常干净的实验,但实际上不能在工业应用中使用。Mooraj等人的研究。强调使用更可行的方法时会出现的挑战。特别是,添加剂制造可能会在实验室和应用之间提供桥梁,因为它非常适合原型制作。本文为控制层间孔隙率提供了一些指导,这可能会证明对在此高弹药领域的未来工作有用。特别是Shi等。他们的工作提供了调整辐射的见解转向结构,大多数文章在各个长度尺度上探索了独特的缺陷结构和能量。3研究了短距离顺序难治性mpeas中点缺陷特性的空间不均匀性。
近年来,高熵合金 (HEA) 引起了材料界的极大兴趣,主要是因为某些成员表现出了令人着迷的特性,并且它们代表了合金设计的新方法。在这一多组分合金系统家族中,近等原子五组分“Cantor”合金 CrCoMnFeNi 尤其引人注目,因为这种合金表现出了卓越的机械性能,而且只有当温度降低到低温状态时,这种性能才会增强。尽管人们对这种合金系统很感兴趣,但迄今为止,很少有研究对这种合金或其成分变体的循环疲劳载荷行为进行表征。在这里,我研究了 Cantor 合金的耐损伤疲劳行为以及温度和载荷比对改变这种行为的影响,以及可能导致观察到的变化的潜在机制。这些测试条件涵盖三种温度范围:293 K、198 K 和 77 K;此外,还调查了每种温度范围内增加的负载比 R 的影响。在巴黎范围的阈值和线性部分进行的疲劳测试表明,Cantor 合金的疲劳行为具有温度依赖性;随着温度降低到低温范围,疲劳曲线向更高的 ΔK 移动,表明在较低温度下对疲劳裂纹扩展的抵抗力更高。此外,观察到较高的负载比对这种抵抗力产生负面影响,导致随着 R 比的增加,ΔK 向较低的方向移动。测试后,进行了一系列机械研究,以调查观察到的这种转变的根本原因。裂纹闭合测量、裂纹路径形态和断口分析为粗糙度引起的裂纹闭合是主要作用机制提供了强有力的证据。