14.1 – 简介 在增材制造工艺中,使用化学或物理过程将液体、粉末、线材或箔片逐层堆积起来,形成部件。直接能量沉积 (DED) 或粉末床熔合 (PBF) 可用作增材制造工艺,其中使用金属粉末或线材在现有部件的基材或自由曲面上打印致密的金属层 [1]。金属粉末(纯元素、元素混合物、母合金)或金属线材高速熔化,并瞬间逐层沉积在相应的金属基材上。在所谓的激光熔覆 [2] 中,该技术通常用于涂覆涂层或工具维修。与减材工艺相比,增材工艺节省时间和资源,因为材料只在需要的地方添加。通常使用成熟的钢、镍基合金或钛合金。但是,也可以通过粉末混合物的原位合金化获得全新的材料,或者通过在堆积过程中改变粉末混合物的成分来创建材料梯度 [3]。高熵合金 (HEA) 代表了未来应用的一个新研究领域。它们由大量元素形成,所有元素都以类似的高浓度存在,例如由锆、铌、铪、钽或钨组成的合金 [4]。形成的合金通常可以是单相或多相混合晶体。HEA 通常可以结合高强度和非常好的延展性。原位合金化为未来生产具有出色高温机械性能的新型金属部件提供了快速材料筛选的独特可能性。长期以来,由于耐火合金的熔点高,其制造仅限于真空电弧重熔。使用基于激光的方法,这些金属被聚焦的激光束局部熔化并沉积在增材制造中。除了材料开发之外,增材制造还为组件设计提供了极大的设计自由度,例如,可用于开发基于仿生原理的负载优化设计 [5]。为了增加增材制造的多功能性,可以使用激光后处理来修改采用该技术生产的零件的表面[6-9]。市面上有不同类型的激光源,这确保了它们适用于广泛的应用,连续波 (cw) 激光器通常用于降低表面粗糙度,而脉冲激光器则用于修改表面功能并提高几何精度。即使有可能取代增材制造工艺链中的某些步骤,当最终制造的组件的局部区域需要特定特性时,采用激光后处理作为附加步骤也被证明是有益的。
主要关键词