摘要。子宫内膜异位症是一种常见的妇科疾病,其特征是子宫内子宫内膜腺和基质的生长,会引起多种症状,例如痛经,超单性性痛和慢性腹痛。17β雌二醇(E2)刺激子宫内膜病变的生长。 尽管由人胎儿肝产生的estetrol(E4)也是一种天然雌激素,但它可能对子宫内膜细胞具有相反的影响。 我们研究了E4和E2对永生的人子宫内膜基质细胞(HESC)的侵袭和迁移的不同影响,并评估了E4是否影响Wiskott-Aldrich综合征蛋白(WASP)家族成员1(WASF-1)的表达。 我们通过矩阵腔室测定法测量了hESC的侵袭。 通过伤口愈合测定和细胞跟踪分析来测量细胞迁移。 通过独立的实时PCR分析证实了WASF-1的表达。 用siRNA进行细胞的转染,以击倒hESC中WASF-1的表达。 e4显着抑制了E2诱导的进入hESC的侵袭和迁移。 WASF-1被发现是基于转移PCR阵列的潜在介体。 WASF-1被E2上调,并被E4下调。 敲低WASF-1抑制迁移。 我们的结果表明E4可能抑制E2诱导的子宫内膜损伤的生长。 WASF-1的下调参与E4对迁移的抑制作用。 使用E4与孕激素一起用作口服避孕剂可能会导致子宫内膜异位症女性的子宫内膜损伤。17β雌二醇(E2)刺激子宫内膜病变的生长。尽管由人胎儿肝产生的estetrol(E4)也是一种天然雌激素,但它可能对子宫内膜细胞具有相反的影响。我们研究了E4和E2对永生的人子宫内膜基质细胞(HESC)的侵袭和迁移的不同影响,并评估了E4是否影响Wiskott-Aldrich综合征蛋白(WASP)家族成员1(WASF-1)的表达。我们通过矩阵腔室测定法测量了hESC的侵袭。细胞迁移。通过独立的实时PCR分析证实了WASF-1的表达。用siRNA进行细胞的转染,以击倒hESC中WASF-1的表达。e4显着抑制了E2诱导的进入hESC的侵袭和迁移。WASF-1被发现是基于转移PCR阵列的潜在介体。 WASF-1被E2上调,并被E4下调。 敲低WASF-1抑制迁移。 我们的结果表明E4可能抑制E2诱导的子宫内膜损伤的生长。 WASF-1的下调参与E4对迁移的抑制作用。 使用E4与孕激素一起用作口服避孕剂可能会导致子宫内膜异位症女性的子宫内膜损伤。WASF-1被发现是基于转移PCR阵列的潜在介体。WASF-1被E2上调,并被E4下调。 敲低WASF-1抑制迁移。 我们的结果表明E4可能抑制E2诱导的子宫内膜损伤的生长。 WASF-1的下调参与E4对迁移的抑制作用。 使用E4与孕激素一起用作口服避孕剂可能会导致子宫内膜异位症女性的子宫内膜损伤。WASF-1被E2上调,并被E4下调。敲低WASF-1抑制迁移。 我们的结果表明E4可能抑制E2诱导的子宫内膜损伤的生长。 WASF-1的下调参与E4对迁移的抑制作用。 使用E4与孕激素一起用作口服避孕剂可能会导致子宫内膜异位症女性的子宫内膜损伤。敲低WASF-1抑制迁移。我们的结果表明E4可能抑制E2诱导的子宫内膜损伤的生长。WASF-1的下调参与E4对迁移的抑制作用。 使用E4与孕激素一起用作口服避孕剂可能会导致子宫内膜异位症女性的子宫内膜损伤。WASF-1的下调参与E4对迁移的抑制作用。使用E4与孕激素一起用作口服避孕剂可能会导致子宫内膜异位症女性的子宫内膜损伤。
雷特综合征 (RTT) 是一种 X 连锁神经发育障碍,由年轻女性 X 染色体上的甲基 CpG 结合蛋白 2 ( MECP2 ) 的功能丧失杂合突变引起。从失活的 X 染色体 (Xi) 重新激活沉默的野生型 MECP2 等位基因代表着对女性 RTT 患者的一个有希望的治疗机会。在这里,我们应用了一种多重表观基因组编辑方法,从 RTT 人胚胎干细胞 (hESC) 和衍生的神经元中重新激活 Xi 中的 MECP2。通过 dCas9-Tet1 和靶向单向导 RNA 对 MECP2 启动子进行去甲基化,从 RTT hESC 中的 Xi 重新激活 MECP2,而在转录水平上没有可检测到的脱靶效应。来自甲基化编辑的 RTT hESC 的神经元维持了 MECP2 的再激活,并逆转了 RTT 的两个特征:体细胞尺寸变小和电生理异常。在 RTT 神经元中,通过 dCpf1-CTCF(与 CCCTC 结合因子融合的催化死亡 Cpf1)和靶 CRISPR RNA 隔离甲基化编辑的 MECP2 基因位点可增强 MECP2 的再激活并挽救 RTT 相关的神经元缺陷,为表观基因组编辑治疗 RTT 和其他潜在的显性 X 连锁疾病提供了概念验证研究。
最近的研究表明胚胎干细胞 (ESC) 具有不发达的先天免疫系统,但是这一发现的生物学意义尚不清楚。在本研究中,我们比较了小鼠 ESC (mESC) 和 mESC 分化成纤维细胞 (mESC-FB) 对肿瘤坏死因子 α (TNF α ) 和干扰素 (IFN) 的反应。我们的数据表明,单独的 TNF α 、IFN α 、IFN β 或 IFN γ 不会对 mESC 和 mESC-FB 产生明显影响,但 TNF α 和 IFN γ 的组合 (TNF α / IFN γ ) 对 mESC-FB 显示出毒性,表现为细胞周期抑制和细胞活力降低,与诱导型一氧化氮合酶 (iNOS) 的表达相关。但是,在用 TNF α /IFN γ 处理的 mESC 中没有观察到这些影响。此外,mESC-FB 易受脂多糖 (LPS) 激活的巨噬细胞引起的细胞毒性影响,而 mESC 则不然。mESC 在所有情况下对细胞毒性的不敏感性与它们对 TNF α 和 IFN γ 缺乏反应有关。与 mESC 类似,人类 ESC (hESC) 和 iPSC (hiPSC) 对 TNF α 没有反应,并且不易受到 TNF α 、IFN β 或 IFN γ 单独或组合的细胞毒性影响,这些毒性会显著影响人类包皮成纤维细胞 (hFB) 和 Hela 细胞。但是,与 mESC 不同,hESC 和 hiPSC 可以对 IFN γ 作出反应,但这不会在 hESC 和 hiPSC 中引起显著的细胞毒性。我们在小鼠和人类 PSC 中的研究结果共同支持了以下假设:减弱的先天免疫反应可能是一种保护机制,可以限制由炎症和免疫反应引起的免疫细胞毒性。生殖 (2020) 160 547–560
在1981年,埃文斯(Evans)和马丁(Martin)分离并建立了小鼠胚泡的内部细胞质量(ICM)分离和建立的胚胎干细胞(ESC)线[1,2]。thomson等人成功地隔离了人类ESC(HESC)。[3]在1998年,HESC提供了研究人类胚胎发育和再生医学的无与伦比的工具[4]。此外,分别在2006年和2007年分别产生了小鼠诱导的绒毛干细胞(MIPSC)[5]和人IPSC(HIPSC)[6,7]。ESC和IPSC的两个关键特征是自我更新,具有不合时宜和多能性的能力以及在适当的培养条件下脱离各种组织细胞类型的能力。作为多能干细胞(PSC)的主要类型,ESC和IPSC提供了研究基因功能的强大工具。特别是,HIPSC对生成患者特异性人PSC(HPSC)的巨大希望[8]。除了PSC外,其他类型的干细胞被广泛使用,例如间充质干细胞(MSC)[9],造血干细胞(HSC)[10]和精子型
在再生医学的历史上,1992年,实验室获得的膀胱首次被用于脊髓脊膜膨出的患者。人工膀胱显示出良好的效果和可接受的结果。6 10年后,从实验室获得的肝脏组织作为第一个引入的实体器官,新组织的体外研究显示出合理和适当的结果,并在研究大鼠中表现出良好的效果。7 如今,再生医学已取得了显着的进步,并获得了再生身体不同器官和组织的卓越能力,因此,世界各地的许多研究人员正在努力准备和推进该领域的成果并使其适用于临床。例如在2015年用于治疗视网膜疾病,人类胚胎干细胞(HESCs)被用于改善9名干性年龄相关性黄斑变性(AMD)患者和9名Stargardt黄斑营养不良患者的病情。结果很好,18名患者中有10名视力明显改善。经过对接受 HESC 治疗的患者 22 个月的随访,有证据表明 HESC 是安全的,并且耐受性良好,此外,没有证据表明存在排斥、不良反应
抽象背景:HPSC来源的内皮和造血细胞(ECS和HCS)是组织工程的有趣细胞来源。尽管它们紧密的空间和时间胚胎发育,但当前的HPSC分化方案仅专门用于这些谱系之一。在这项研究中,我们产生了一种可以在两种谱系的体外分化的血红素内皮人群。方法:通过CD144 + - 胚胎体(HPSC-EBS),将两条hESC和一条HIPSC线分化为血红素内皮人群,HPSC-EC和爆炸菌落(HPSC-BC)。HPSC-EC的特征是内皮菌落形成测定,LDL摄取测定,TNF-α的内皮激活,一氧化氮检测和基于基质的管子的形成。造血集落形成细胞分析是从HPSC-BCS进行的。有趣的是,我们确定了以CD144和CD45的表达为特征的HPSC-BC种群。HPSC-EC和HPSC-BC;在小鼠背侧皮肤折室上的缺血性组织损伤模型和造血重建的HPSC-ECS和HPSC-EB-CD144 +的免疫抑制小鼠中,体内实验已通过缺血性组织损伤模型实现。进行转录组分析以确认hESC衍生细胞群体的内皮和造血认同,通过将它们与未分化的hESC进行比较(例如,HPSC-EC与HPSC-EB-CD144 +),并针对人类胚胎肝(EL)内皮,血红蛋白和造血细胞亚群。结果:在无血清条件下进行84小时HPSC-EBS形成后,获得了血红素内皮种群,并根据CD144表达分离。在人间注射HPSC-EB-CD144 +的hPSC-EB-CD144 +有助于免疫缺陷小鼠中CD45 +人类细胞的一代,这表明HPSC-EB-CD144 +内血液发电性ECS存在。HPSC-EB-CD144 +的内皮分化在体外的功能性EC> 95%。HPSC-EC参与了小鼠缺血模型中体内新容器的形成。在体外,HPSC-EB-CD144 +的造血分化产生了> 90%CD43 + HPSC-BC的中间群体,能够产生髓样和红系菌落。最后,转录组分析分别证实了HPSC-EB-CD144 +,HPSC-ECS和HPSC-BC的血液层,内皮和造血认同,以及
具有治疗前景的间充质干细胞 (MSC) 通常会被宿主的先天免疫细胞(包括自然杀伤 (NK) 细胞)迅速清除。人们已努力生成免疫逃逸的人类胚胎干细胞 (hESC),其中通过缺陷的 β -2-微球蛋白 (B2M)(人类白细胞抗原 (HLA) I 类的共同单位)逃避 T 细胞免疫,并通过 HLA-E 或 -G 的异位表达抑制 NK 细胞。然而,NK 亚型在接受者之间甚至在不同的病理状态下都不同。有必要剖析和优化免疫逃逸细胞对 NK 亚型的功效。在这里,我们首先生成 B2M 敲除 hESC 并将其分化为 MSC(EMSC),并发现仅当通过可诱导慢病毒系统以剂量依赖性方式转导时,表达 HLA-E 和 -G 的 B2M -/- EMSC 才会出现 NK 抗性,而当它们插入安全港时则不会出现。在转导的 EMSC 中同时高水平表达的 HLA-E 和 -G 抑制了三种主要 NK 亚型,包括 NKG2A + / LILRB1 + 、NKG2A + / LILRB1 - 和 NKG2A - / LILRB1 + ,并且 IFN- γ 启动进一步增强了这种抑制作用。因此,这项研究设计了对多种 NK 亚型具有抗性的 MSC,并强调当转基因用于赋予宿主细胞新效应时,剂量很重要,尤其是对于治疗细胞逃避免疫排斥而言。
Nutrifreez®D10冷冻保存介质是一种优化的冻结溶液,设计和验证了用于对各种组织和细胞类型的冷冻保存,包括但不限于hesc,IPSC和MSC等敏感细胞类型。Nutrifreez®D10培养基在冷冻保存过程中保持定义和无动物成分条件,对于在无Xeno的系统中培养细胞时保持一致性至关重要。Nutrifreez®D10培养基已准备使用,并通过DMSO进行了预先构建,在冷冻,存储和解冻过程中为细胞提供了保护环境。
据报道,用 BMP4 和 TGF β 信号抑制剂 (A83-01) 和 FGF 信号抑制剂 (PD173074)(称为 BAP)处理的人类胚胎干细胞 (hESC) 可以在体外有效分化为胚外 (ExE) 细胞。由于无法获得人类胚胎,从伦理上讲不可能在体内测试 ExE 细胞的发育潜力。在这里,我们证明大多数 ExE 细胞表达滋养层细胞 (TB) 和羊膜细胞 (AC) 的分子标记。宫内移植后,ExE 细胞会形成小鼠胎盘。更有趣的是,ExE 细胞可以与小鼠囊胚嵌合,因为在注射到囊胚后,它们会穿透其滋养外胚层。将注射的囊胚植入代孕小鼠体内后,在 E14 时在胎盘迷路、连接区甚至子宫蜕膜附近发现了人类细胞,这些细胞表达胎盘标志物并分泌人绒毛膜促性腺激素。令人惊讶的是,ExE 细胞也对嵌合胚胎的软骨有贡献,其中一些表达软骨标志物 SOX9,这与胎盘中 TB 和 AC 的中胚层潜力相一致。删除中胚层决定因子 MSX2 会限制 ExE 细胞对胎盘的贡献。因此,我们得出结论,hESC 衍生的 ExE 细胞可以与小鼠囊胚嵌合,并对嵌合体的胎盘和软骨都有贡献,这与它们的异质性一致。宫内和囊胚内注射是研究 ExE 细胞发育潜力的新颖而灵敏的方法。
背景:心脏病已被确定为心脏病发作的主要原因之一;此外,众所周知,这会导致数十亿个心肌细胞死亡,这无法再现和替换。其余细胞通常面临着血液动力学负担的显着增加。攻击或其他心血管疾病后修复心脏已避免了医学科学。使用心脏病发作的患者的细胞修复心脏肌肉的能力是再生健康的新组织的长期目标。用于心脏病治疗的细胞来源包括人类胚胎干细胞(HESC),已知这些干细胞具有分化为软骨细胞,成骨细胞,脂肪细胞和心肌细胞的能力。心脏成纤维细胞大量存在于心脏中;已知它们参与了心肌的结构,生化,机械和电性能。